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Abstract

This paper provides (i) new results on the structure of optimal portfolios, (ii) economic
insights on the behavior of the hedging components and (iii) simulation-based methods for
numerical implementation of allocation rules. The core of our approach relies on closed-form
solutions for functionals of diffusion processes which simplify their numerical simulation and
facilitate the computation and simulation of the hedging components of optimal portfolios.
One of our procedures relies on a variance-stabilizing transformation of the underlying process
which eliminates stochastic integrals from the representation of random variables in hedging
terms and ensures the existence of an exact weak approximation scheme. This improves
the performance of Monte-Carlo methods in the numerical implementation of portfolio rules
derived on the basis of probabilistic arguments. Our approach is flexible and can be used even
when the dimensionality of the set of underlying state variables is large. We implement the
procedure for a class of bivariate and trivariate models in which the uncertainty is described by
diffusion processes for the market price of risk (MPR), the interest rate (IR) and other relevant
factors. After calibrating the models to the data we document the behavior of the portfolio
demand and the hedging components relative to the parameters of the model such as risk
aversion, investment horizon, speeds of mean-reversion, IR and MPR levels and volatilities.
We show that the hedging terms are important and cannot be ignored for asset allocation
purposes. Risk aversion and investment horizon emerge as the most relevant factors: they
have a substantial impact on the size of the optimal portfolio and on its economic properties
for realistic values of the models’ parameters.
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1 Introduction.

Asset allocation models have received extensive attention in the past three decades. Prompted
by the seminal work of Merton (1969, 1971) researchers have explored various aspects of the
problem in the context of financial markets with diffusion price processes (e.g. Richard (1975)).
Numerical methods based on the dynamic programming approach employed in this literature have
also been used to examine the properties of optimal portfolios (Brennan, Schwarz and Lagnado
(1997)). Numerical schemes based on PDEs, however, become increasingly difficult to implement
when the number of underlying state variables increases. More recent contributions by Karatzas,
Lehoczky and Shreve (1987) and Cox and Huang (1989) have proposed an alternative resolution
method based on martingale techniques. This approach yields a closed form solution for optimal
consumption when markets are complete even when asset prices follow Ito processes with history-
dependent coefficients. The optimal portfolio was derived by Ocone and Karatzas (1991) using the
Clark-Ocone formula. This representation formula expresses the portfolio in terms of expectations
of random variables which involve ”abstract” Malliavin derivatives of the coefficients of the model,
namely the interest rate (IR) and the market price of risk (MPR).

But while theoretical formulas for optimal portfolios are available in general contexts little
is known about the structure and properties of the hedging components. Even if we restrict
attention to diffusion models, realistic specifications with stochastic IR and MPR give rise to
complex hedging terms which depend on multiple state variables and are often difficult to evaluate
numerically. As a result attention has been devoted to (i) state variable specifications for which
closed form solutions are available (Kim and Omberg (1996), Liu (1999), Wachter (1999)) or (ii)
specifications which are computationally tractable based on dynamic programming techniques
(Brennan, Schwarz and Lagnado (1997)), or (iii) discrete time models based on approximated
Euler equations (Campbell and Viceira (1999)).

This paper provides three main contributions. First we exploit the diffusion nature of the
opportunity set to provide explicit expressions for the Malliavin derivatives arising in the hedging
components of the optimal portfolio. Hedging demands are expressed as conditional expectations
of random variables which depend on the drift and variance of the relevant state variables. These
formulas are valid for any structure of the underlying processes and of the utility function and
reduce the computation of hedging demands to the computation of expectations, as in traditional
option pricing. Our approach can therefore be seen as a translation of the dynamic asset alloca-
tion problem into an option pricing problem for which Monte Carlo methods, as summarized in
Boyle, Broadie and Glasserman (1997), have long been successfully applied by practitioners. Fur-
thermore, the formulas enable us to establish new theoretical results about the hedging behavior.

Second we derive an alternative representation of Malliavin derivatives of diffusion processes
which simplifies their evaluation. Our formula relies on a variance-stabilizing transformation of
the underlying process and eliminates stochastic integrals from their representation. Aside from
its theoretical interest this new expression has interesting computational benefits. Indeed, the
absence of stochastic integrals ensures the existence of an exact weak approximation scheme for
the martingale part of the Malliavin derivatives and this improves the rate of convergence of
approximations of Malliavin derivatives to their true values. The scheme also increases the speed
of convergence of simulated trajectories of hedging terms and of any statistic (such as confidence
intervals) of simulated hedging terms. Finally it may also help to reduce the second-order bias
and therefore the size distortion of asymptotic confidence intervals of the Monte Carlo estimator



of the hedging demands and portfolios given the realization of the state variables.

Third we provide new results on the economic properties of optimal portfolios. We examine
bivariate and trivariate IR and MPR models in a setting with constant relative risk aversion.
In our benchmark bivariate model the IR process is mean-reverting with square-root volatility
(MRSR) and the MPR process is Gaussian with either mean-reversion (MRG) or with mean-
reversion and interest rate dependence in the drift (MRGID). More elaborate trivariate models
with stochastic dividend yield or volatility, and with multiple assets are also considered. In these
settings we document the magnitude of the hedging terms and their behavior relative to the
parameters of the model such as risk aversion, investment horizon or IR and MPR values. All our
results are based on a portfolio formula which evolves from the Ocone-Karatzas representation.
This modified formula which emphasizes the role of relative risk aversion and wealth sheds further
light on the portfolio/hedging behavior. It can be viewed as a minor contribution of the paper.

Some of the lessons drawn from our simulations can be summarized as follows:

1. Our methodology involving the combination of Monte-Carlo simulation and our variance-
stabilizing transformation produces very reasonable values for the shares of wealth invested
in the stock. Unlike some earlier studies of optimal portfolios interior solutions are obtained
and portfolio shares are stable in simulation exercises such as market timing experiments.

2. Hedging components are important for asset allocation purposes. For long horizons the ad-
justment to mean-variance demands can represent up to 80% of the stock demand. Hedging
demands also exhibit low volatility and are therefore very stable over time.

3. Critical factors in optimal asset allocation are the risk aversion and the investment horizon
of the investor. For instance, in our basic bivariate model, investors with short (long)
horizons and whose risk aversion exceeds 1 want to reduce (increase) their stock demand
relative to the logarithmic investor in order to hedge against MPR (IR) fluctuations. The
effects documented in the paper rationalize the marketing of investment products tailored
to different categories of investors classified according to those criteria.

4. Allocation rules are remarkably stable relative to the other parameters of the model. Vari-
ations of the order of 2 standard deviations around estimated parameter values have little
impact on the magnitude of investment shares.

5. The global behavior of the optimal portfolio in the multiasset case parallels the behavior
displayed with a single risky asset. Hedging terms exhibit strong patterns with respect to
correlations when asset returns are highly correlated. Correlations between returns and
among state variables emerge as additional factors driving the size of hedging demands.

The portfolio choice problem is stated next. Section 3 presents a closed-form solution and
discusses its structure. Section 4 develops an alternative formula for Malliavin derivatives of
diffusion processes. Numerical implementation is discussed in section 5. Our basic bivariate model
with MRSR interest rate and MRG/MRGID market price of risk is analyzed in sections 6 and 7.
Sections 8 and 9 provide trivariate extensions to stochastic dividends and stochastic, imperfectly
correlated volatility. A multiasset model is analyzed in section 10. Proofs are in appendix A;
appendix B extends the procedure to multivariate diffusions; appendix C contains results for the
MRGID model; appendix D reports asymptotic properties of state variable estimators.



2 The portfolio choice problem.

We consider a portfolio choice problem in an economy with d state variables Yj;,j =1, ...,d, and
d sources of Brownian uncertainty Wi,i = 1,...,d.! State variables follow the vector diffusion
process

dY; = i (t, Yi)dt + ¥ (t, Y )dW, (1)
where the coefficients satisfy appropriate Growth and Lipschitz conditions for the existence of
a unique strong solution.? The investor allocates his wealth between d risky securities and one
riskless asset (a money market account) with instantaneous riskless rate of return r; = r(t,Y:).
The security prices S;,¢ = 1, ..., d, satisfy the stochastic differential equations

dSit = Su[(p;(t,Y) — 6:(t,Yy))dt + o5 (t, Y )dWy]; 1 <i<d (2)
where f; is the expected return, ¢; the dividend rate and o; the vector of volatility coefficients of
security ¢. We assume that r(t,Y:), 11;(¢,Y:), 0:(t,Yz) are integrable (P — a.s.) and that o;(¢,Y;) is
square-integrable (P — a.s.). Let o denote the d x d-dimensional volatility matrix whose rows are
0i,i =1,...,d. Suppose that ¢ is nonsingular almost everywhere and that the market price of risk

0= 0(t,Y:) = o(t, V) ((t,Y2) —7(t,Yo)1),

where 1 is the unit vector, is continuously differentiable and satisfies the Novikov condition
Eexp (% _[OT 0,0:dt) < oco. Under this condition the risk neutral measure is well defined and
given by d@Q) = npdP where

ot ot
1, = exp [— / egth—l / egetdt}.
Jo 2 Jo

The state price density is £, = B; ', where B; = exp[_f(;5 rsds| is the date t-value of a dollar
investment in the money market account. Relative state prices are written &, , = &,,/&;. Under Q
the process WtQ =W + ]g 0,dv is a Brownian motion.

Suppose that an investor seeks to maximize the expected utility of his terminal wealth by
selecting a dynamic portfolio policy composed of the d risky assets and the riskless asset

max U(Xr7) = E[u(T, X7)] s.t. (3)
dXt :’T‘tXtdt—FTf%[(,ut —T’tl)dt—FO'thVtL XO =T (4)
X >0 for all ¢t € [0,T).

Here X; represents the investor’s wealth at date ¢, x is his initial wealth and 7, the amounts in-
vested in the risky assets at date t. The nonnegativity constraint is a typical no-bankruptcy condi-
tion. The utility function is strictly increasing and concave with limiting values limx _,oc Q2w (T, ) =
0 and limx_,o Gou(T,x) = oo for all T' < co. (For any function f(t,X) we write 0;f for the first
derivative relative to i, ¢ = 1,2 and 0;;f the second derivative, 7,7 = 1,2; when the second
argument is a vector Oy f is the gradient and ds2 f the hessian of second derivatives).

Tt is straightforward to consider k # d state variables. To simplify notation, in particular for the expressions of
the Malliavin derivatives, we assume that k = d.

’Note that the d state variables are joint solutions of the system (1), i.e. they influence each other. Remark 1
considers the special case of an autonomous system in which each state variable is determined independently.



3 The optimal portfolio: the investor’s hedging behavior.

The portfolio choice problem described above can be resolved by using a martingale approach
(Karatzas, Lehoczky and Shreve (1987), Cox-Huang (1989)) to identify optimal terminal wealth
in explicit form and then applying the Clark-Ocone formula on the representation of Brownian
functionals to obtain the financing portfolio. This approach was adopted by Ocone and Karatzas
(1991) who provide formulas in the form of conditional expectations of random variables involv-
ing Malliavin derivatives. Due to the generality of their model in which asset prices follow Ito
processes (with unspecified coefficients) these Malliavin derivatives are abstract quantities without
an explicit structure. In this section we exploit the diffusion specification of the financial market
to derive explicit expressions for the Malliavin derivatives and hence for the optimal portfolio.

3.1 The optimal portfolio policy.

Let V(x) denote the value function in the optimization problem (3)-(4), I(T,y) the inverse mar-
ginal utility, ¥ the marginal value of initial wealth and X the optimal wealth. Our first result
identifies the general structure of the optimal portfolio and of its hedging components.

Theorem 1 If V(x) < oo and &pI(T,5ér) € D2 we have that®

7 o= X —(o(t,Y;))710(t, Yy)e(t, Y, 5
: tR(t,Xt)(( 0)) O, Y)e(t, V) (5)
A 1
+X — —1)(o(t, Y1) ta(t,Y;
t(R(t7Xt) )(o(t,Ye)) " al(t, Y)
A 1
+X — —1)(o(t,Y:)) 7 0(t, Y,
t(R(t’Xt) )(o(t, 1))~ b(t, Yr)
where R(t,x) = %%E denotes the Arrow-Pratt measure of relative risk aversion, and
T
a(t,y;) =EQ | Bz 1~ 1/R(T, Xy) / Dyrsds (6)
X\ 1-1/R(t,Xy)
By
# (1-YRTX0)\ [
b(t,v;) = EQ | Z= 2 / (AW D6, (1)
X\ 1-1/R(t,X3)
Xr .
ot vy) = BQ | 2 BbX) (®)

X R(T, Xr)

In these expressions optimal wealth equals X; = B[, 7 I(T,9&r)]. The Malliavin derivatives in
(6)-(7) are given in explicit form by D, = 320(s,Ys)' DYy and Dyrs = Oor(s,Ys)DiYs where

DY, = oY (t,Y;) exp {/t dLv} : (9)

3D12? is the domain of the Malliavin derivative. See Nualart (1995) for exact definitions.



with the d x d random variable dL.,, defined by*

d d
1
dLy = | Dop¥ (v, Yy) = 5 Y 0205 (0, Y0) (207 (v,0)) | dv+ Y 0907 (v, Y)Wy (10)
j=1 j=1

where (T_); denotes the j™" column of the matriz oY .

Note that the first component of the optimal portfolio (5) is a mean-variance component while
the two other components are intertemporal hedging terms (see Merton (1971)).5 In this general
formula the mean-variance term varies with optimal wealth since the coefficient of relative risk
aversion is allowed to change with wealth. Hedging arises since the investor seeks insurance against
fluctuations in the interest rate (second component of (5)) and in the market prices of risk (third
component of (5)). That the second term is motivated by the desire to hedge interest rate risk
is evidenced by the presence of the Malliavin derivative D;yrgs which captures the interest rate’s
sensitivity to the underlying risk factors, i.e. the Brownian motion processes W;. In accordance
we call this term an IR-hedge.® Similarly the third term is seen to emerge when the market prices
of risk are sensitive to the W; (i.e. when D85 # 0) and is called an MPR-hedge. When (r, ) are
constant or deterministic all these hedging terms are null since in the Malliavin derivatives D;r;
and D0, the partial derivatives 9o7(s,Ys) and 020(s,Ys) are zero.

Before discussing the behavior embedded in the hedging components it is also of interest to
point out that formula (5) expresses the hedging components in explicit form: hedging demands
are conditional expectations of random variables which depend entirely on the exogenous coeffi-
cients of the model and the utility function. The key to these explicit expressions is the derivation
of closed-form solutions for the Malliavin derivatives D;r, and D;0s which are obtained due the
diffusion structure of the uncertainty. As mentioned above these results complement Ocone and
Karatzas (1991) who express the optimal portfolio in terms of abstract Malliavin derivatives.

3.2 The intertemporal hedging behavior.

Let us now focus on the hedging behavior of the investor. First, it should be noted that a
myopic individual (R(t, X;) = 1) does not hedge”. The signs of the hedging terms will otherwise
depend on the signs of the conditional expectations a(t,Y;) and b(t,Y:). For example, when these
are positive, an individual who is more (less) risk tolerant than the logarithmic investor will
over- (under) invest in the risky assets. For the IR-hedge simple sufficient conditions ensure an
unambiguous behavior.

*The exponential in (9) should be interpreted as the exponential of a matrix, i.e. (9) is short hand notation for
the solution of dD;Y; = (dLs + %d[L]s) D.Y; subject to the boundary condition D;Y; = O'Y(t, Y:), where [L] is the
quadratic variation process.

>The optimal portfolio formula extends easily to the case of intermediate consumption. It also extends to settings
with infinite horizon provided that the Novikov condition is satisfied.

SExpression (9) shows that the Malliavin derivative, in a Markovian model, corresponds to the derivative of
the stochastic flow of the SDE of state variables with respect to the initial position of the state variables (Colwell,
Elliott and Kopp (1991)).

"When R(t, )A(t) and R(T, )?T) tend to one, the ratio inside the conditional expectations (6)-(7) tends to one as
seen by applying ’Hopital’s rule.



Proposition 2 Fizt € [0,T]. Suppose that the conditions

(i) (o(t,Y;) )1 (Dyrs) <0 for all s > t,(P-a.s)

(ii) R(t,X;) > 1 and R(T,X1) > 1 (P-a.s).
hold. Then, intertemporal hedging of interest rate risk raises the demand for stocks (i.e. the
IR-hedge is nonnegative). If (i)-(it) hold for all t € [0,T] the IR-hedge boosts the proportion of
wealth invested in stocks at all times.

Conditions (i)-(ii) are very general. The first condition holds in a variety of special cases that
are of interest for empirical or theoretical reasons. For instance it holds if state variables are
autonomous (see remark 1 below) and

(o(t,Y2)) ™! (Bar(t, Yoo (¢,Y) < 0. (11)

In the single risky asset case this simply boils down to negative correlation between the interest
rate and the risky asset price, which is empirically verified if the risky asset is interpreted as
the SP500 index. Condition (11) also holds with multiple risky assets that are independent and
negatively correlated with the interest rate. In all these cases the particular structure of the
coefficients of the state variables processes (whether they are increasing, decreasing, convex or
concave functions) does not matter for the sign of the hedging term: the only aspect of relevance
is whether (11) is verified.

The second condition applies even to models in which relative risk aversion varies with optimal
wealth. As long as an investor displays more risk aversion than a myopic investor at date ¢ and
for all possible realizations of optimal terminal wealth the condition will hold.

When we combine both conditions we obtain, for instance, the intuitive proposition that
individuals that are more risk averse than the log investor (R(t,Xt) > 1,R(T, XT) > 1) will
increase their demand for the market portfolio of risky assets when the interest rate covaries
negatively with the portfolio return (single risky asset model) in order to hedge interest rate risk.

We conclude this discussion with a description of hedging demands and Malliavin derivatives
for the case of autonomous state variables.

Remark 1 When the system of stochastic differential equations (1) is composed of d autonomous
equations dYy = Y (t, Yy )dt + o (t,Yi)dW; fori=1,...,d, we can write

DiYiy = oY (1, Yig) exp { / sz;} (12)
t

; 1 /
AL, = o) (v, Yio) — 3000) (0, Yio) (Do (0, Vo) v + 0o (0, Ye)dW,  (13)
In this instance the sign of the Malliavin derivative (12) is positive (negative) when o} (t,Y;) is
positive (negative). The results discussed above follow immediately from this property.
3.3 Constant relative risk aversion.

Since our numerical results in later sections assume constant relative risk aversion we specialize
the formulas of theorem 1 to that case.



Theorem 3 (CRRA) When the utility function exhibits constant relative risk aversion R the
optimal portfolio is

. 5 1|1 1 1
it = Xe(o(t,Y2)") 1 | 50(6, V) + (5 — Dalt, Y2) + (5 — 1)d(t, i) (14)
R R R
where A
%z T E; { 1-1/R It Dtrsds}
a(t,Y,) =BF | 25 | Dirsds| = TR (15)
i B [60"]
Xr 1 E, |7 [P awQyD,6,
b(t,Y,) =B | / Db AW 2| = o’ | (16)
t

X, ’ E, [ 1— 1/3}

and &, p = exp(— .];T(rv 162)dv — /t 0,dW,). The Malliavin derivatives in a and b are given in
theorem 1.

In this formula two expressions are provided for the coefficients a, b in the hedging components.
The first is simply the specialization of the previous result to the case under consideration. The
second formula uses the relation between optimal wealth and state prices in order to express a,b
in terms of the relative state price density & ;» between periods ¢ and T'. This formula clearly
demonstrates that the functions a,b depend only on the state variables Y.

The formulas described in theorems 1 and 3 provide useful information about the qualita-
tive behavior of the investor. In order to assess the magnitude of the various components, and
hence their relevance for asset allocation purposes, it is nevertheless necessary to get quantitative
estimates. Practical implementations require the computation of the conditional expectations
appearing in the portfolio formulas. Clearly Monte Carlo simulation appears to be an appealing
way to proceed. In the next section we pursue this avenue and suggest a further transformation
which facilitates the computation of Malliavin derivatives and may also help in the estimation of
the hedging demands.

4 An alternative formula for Malliavin derivatives of diffusions.

The key to our simplification is a change of variables which transforms a stochastic differential
equation into an ordinary differential equation. In effect this (variance-stabilizing) transformation
removes stochastic integrals from expressions such as a(t,Y:) and b(t,Y;). Changes of variables
of this type are used by Doss (1977) to prove that an SDE can be solved pathwise, since it can
be reduced to an ordinary differential equation.® Appendix A shows how Doss’ arguments can
be used to derive alternative expressions for Malliavin derivatives of solutions of one-dimensional
SDEs. In this section we state the result and discuss its implications.

8This result also plays an important role in the approximation of solutions of SDEs (e.g. Talay and Pardoux
(1985)). In this context it can be used to conclude that convergence of the underlying Wiener process implies the
convergence of the solution of an SDE.



4.1 The main result.

Consider a process Y which satisfies the one-dimensional SDE
dY; = p(t, Yy)dt + o(t,Y;)dWy; Yo = y.
The Malliavin derivative of Y has the following alternative representation.

Proposition 4 If the following conditions hold’

(i) differentiability of drift: u € C*([0,T] x R)

(ii) differentiability of volatility: o € C*([0,T] x R)

(tit) growth condition: p(t,0) and o(t,0) are bounded for all t € [0,T],
then we have for t < s that

M7 2 (@m)r — A7\, Yoo (17)

DY, = (s, ;) exp [ [own-
Jt

Note that (17) expresses the Malliavin derivatives entirely in terms of Riemann-Stieltjes inte-
grals of first and second derivatives of the coefficients of Y. Thus the stochastic integrals which
appeared in the earlier formulas ((10) and (13)) have been entirely eliminated. Formula (17) is
therefore easily computed using standard methods to approximate the Riemann integrals involved.
With the variance stabilizing transformation the numerical calculation of the Malliavin derivatives
is therefore of the same complexity as the numerical solution of an ODE. A second difference with
the earlier expressions is that the leading term is the future volatility of the process at date s
instead of the current volatility at ¢t. This implies that this leading term cannot be factored out
of conditional expectations at date ¢ as was the case in (5) or (9). Randomness of the leading
term however does not increase the computational difficulty involved in evaluating the Malliavin
derivative.

With this numerically appealing expression for the Malliavin derivative we obtain a formula
for the IR-hedge which does not involve stochastic integrals any longer. To achieve the same
result for the MPR-~hedge we introduce a second transformation which enables us to write the
SPD and, as a consequence, also the MPR-hedge without any stochastic integral. We illustrate
the idea in the univariate case.

Proposition 5 Let d =1. If the following conditions hold
(i) differentiability of MPR: 6 € C%([0,T] x R)
(ii) differentiability of volatility: o € C*([0,T] x R)
then the SPD can be written as

£ =ex —/t[r+162—£ —8w—1(890—080)}(sY)ds—w(tY)+w(OY) (18)
t = €Xp A D) UM 1 5 2 2 » Xs , Xt >, X0

where the function 1 € C*([0,T] x R) solves dytpa = 6. Consequently, we obtain

T 9 T
/ Dls[dWs + 05ds) = —(T,Yr)DYpr — 0(t,Yz) — / (91(8,Ys) + g2(s,Y5)) DiYsds (19)
t t

g

?The space C*([0,7] x R) is the space of 4 times continuously differentiable functions on the domain [0,7] x R.



where

9i(s,Ys) = [@ - Q%] (s, Y5)

1 000 000 0
92(s,Ys) = [5@290 — 0020 + = — p—— & — oy — 00p0 | (5,Y3)

4.2 A bivariate state variable example.

To illustrate the formulas above consider the model with CRRA of theorem 3 and suppose that
the state variables are given by the pair (r,6) which satisfies!'”

dry = kp(F — 7)dt + opr)"dW, ro given (20)
df; = k(0 — 04)dt + og0]°dW;, 6 given (21)

where (K, T, 0,7, Ko, 0,7y) are nonnegative constants, (0, 7g) are constants (possibly negative)
and (7,,7g) € [0,1]. The Brownian motion W is unidimensional. This model nests standard
formulations as special cases. The class of interest rate processes (20) is used in another context
in Chan, Karolyi, Longstaff and Sanders (1992). The class of models (21) for the MPR has not
been explored in the literature yet. We also assume that the stock volatility is stochastic and
equal to o(r¢, 6;). This financial market is then described by two state variables (7, 0).

The transition from the general model with state variables Y to the model (20)-(21) with state
variables (r,#) is immediate since the Malliavin derivative D:#,, can now be computed directly
from the process (21). In order to state the result define the process

hoo(, 5,0, T3 ) = —(1 - 7) / <H(1 A lgzv(i)m—w) du
Jt

wl—ywu 2 Ty

for a quadruple of constants (v,k,0,T) and some process x. Taking account of the specific
structure (20)-(21) then leads to

Corollary 6 In the financial market (20)-(21) the optimal portfolio for CRRA utility is given by
(14)-(16) where

D;r, = T;)Yro-r exXp [ht,v (77-7 Ky, Op, T T)]
D6, = 0% 0gexp [htﬂ)('}/a’ Ko, g, 0; 9)] .

and

T T
o =exp |~ [ nuds =5 [0+ 001 =)0 + 22261700~ 6.)ds — 660) + o161
’ t t o

with ¢(x) = Mﬁ_%‘. The stochastic integral in the MPR-hedge (16) can also be written
T . T
/ DO [dWs + 05ds] = O exp [hm(yg, Ko, 09, 0; 9)] — 0 — / 92(8,Ys)Di0sds
Ji Ji

with g2(s,Y2) = 3oo7p(1 = 70)02 " + 52 (1= 7086, = (27083 7).

10T his is equivalent to a model with two state variables Y = (Y1,Y2) in which the equations (7, = r(t,Y1),0: = 6
(t,Y2)) can be inverted and the state variables can be expressed as Y; = (f1(r¢), f2(0:)).
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When 7,,7y = 0 (Ornstein-Uhlenbeck IR and MPR processes) the formulas above simplify
even further.

Corollary 7 Suppose that u € CRRA. When the interest rate and the market price of risk follow
Ornstein-Uhlenbeck processes (V,,7v9 = 0) the optimal portfolio is given by (14)-(16) where

a(t,r) = 2= (1 — exp[—k (T — 1)) (22)

E: 7" (J emaowd)|
B

The analytical expression for the IR-hedge in (22) clarifies the influence of the parameters of
the interest rate process and the time horizon. Given the expressions provided in corollary 6 the
MPR-hedge in (23) also has an analytical expression, albeit more complicated than the interest
rate expression.

b(t,0;) = og (23)

5 Numerical implementation.

It follows from the results in the prior sections that the problem of finding the optimal portfolio
for power utility function reduces to the identification of the functions a and b. When closed form
expressions for a,b are not available, one must resort to a numerical scheme to estimate their
values. As explained before Monte-Carlo simulation is naturally suggested by the structure of
the problem and this is the approach that we adopt. In our context the simulation procedure
involves two sources of error. First, since the joint law of the SPD and the Malliavin derivatives
involved in the IR- and MPR- hedge terms are generally unknown we have to use a discretization
scheme to approximate these random variables. It is well-known that such a discretization proce-
dure produces a bias. Second, since we do not know how to calculate analytically the conditional
expectation we rely on a law of large numbers to evaluate the expectation using independent repli-
cations of the random variables which enter in the hedging terms. This Monte-Carlo estimation
of the conditional expectation also introduces an error.

In the discussion which follows we shall restrict attention to the model with CRRA utility. In
this context, we estimate the functions a and b with M replications and N discretization points
for the investment horizon by

S (& (YN )Y RHEN (YN ()

aNM(T —t,y) = SV (N (YN ()1 VR (24)
(T _ ¢y = i En Y @) R (0 ) )

SM (€N (YN () 1/ R

where HZN (YN (y)) and HENY (YN (y)) are estimators of _ftT Dyrsds and _ftT Dyl [dWs + 04ds]
respectively. In these expressions we have emphasized that these quantities are functionals of the
approximated state variables starting at Yg¥ = y.
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Since the state variables, the SPD and the Malliavin derivatives of the state variables are all
given as solutions of SDEs, the simplest approach for estimation is to use the Euler scheme. It
has been shown by Kurtz and Protter (1991) that the order of convergence for this scheme is
1/ VN due to the discretization error in the martingale parts of the SDEs. In Detemple, Garcia
and Rindisbacher (DGR) (2000) we show that our variance-stabilizing transformation eliminates
discretization errors in the martingale part of the SDE of the transformed state variables and
therefore attains a rate of convergence of order 1/N, which is the same convergence rate as for the
Euler scheme of an ODE (see Appendix D).!2 In order to illustrate this difference in performance
between the two schemes we estimate the respective absolute computational errors in the Malliavin
derivative of the IR for different discretizations N of the time interval [0,7]. We estimate errors
by the strong criterion

M
R . 1 , .
VM = EM DN rp — Dorg| = — Y ‘DéVﬂrT — Diry
=1

where Dgrp denotes the true value of the derivative and Dév rp its approximation based on N
discretization points using M independent replications. We also compute the respective errors
with and without transformation for the state variable r;. Since the computation of this statistic
requires the true distribution of the Malliavin derivative we assume that the IR follows the MRSR
process ((20) with v, = %) with parameters T = 1, k, = .004,7 = .06, o, = .0309839, rq = .06."3
To compute the expectation above we take 20 batches of 1,000 simulations each. For each batch
an absolute error is estimated. Estimated absolute errors are then averaged over the batches.
Table 1 below reports the results. Columns 2 and 4 show that the speed of convergence of the
Euler scheme is roughly of order 1/ V/N. Columns 3 and 5 illustrate the increase in the speed of
convergence to 1/N when the scheme with transformation is used.

[Insert Table 1 here].

However, to compute hedging terms, we evaluate expectations of functionals of the state
variables. In DGR (2000), we show that the increased speed of convergence obtained with the
transformation for the numerical solution of SDEs of state variables fails to increase the speed of
convergence of expectations of functionals of the state variables. This extends a result of Talay
and Tubaro (1991). They have shown that, for the Euler scheme, E[f(Y) — f(Yr)] is of order
% for functions f and diffusion coefficients ;1 and o satisfying certain boundedness assumptions.
Even though our problem is more complicated since we are not evaluating a function of a terminal

"That is \/N(YN —Y) = UY where convergence is in the weak sense and the error process in non-trivial
UY (#0).

“That is N(G(ZN) —Y) = V¥, where G(Z") is an estimator of the state variables Y and Z% is obtained using
the Euler scheme for the transformed state variables.

3Since o, = 2\/m the interest rate r is the square of an Ornstein-Uhlenbeck process Y: = \/r_t The true value
can then be calculated by using the exact simulation of the transformed state variables

Yira = Yie®® + B3(0,e* VAW, 1o — Wi) + /]s22]Z)

where Z is a Gaussian variate independent of W, a = =2, 8 = 0,/2,A = L and so = *** (£ — A) + 2(A -

é) + % This choice of coefficients ensures that Y has the correct variance and covariance with the increment of
the Brownian motion WA — Ws.
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point of a numerical solution to a SDE but a functional which depends on the whole trajectory
of the solution, the same result holds. Nevertheless, as we will discuss next, the transformation
may still be useful as it may reduce the asymptotic second order bias.

Denoting estimators without our transformation (by direct application of the Euler scheme)
by * and estimators with the transformation by °, we obtain under certain integrability conditions
(see DGR (2000) for details) for the a(-) function

VM@ENM(T —t,y) — a(T — t,y)) = eKoY) + MaY) (26)
VM@ENM(T —t,y) — a(T — t,y)) = eKoY) + MoY) (27)

where € = 3@ is fixed for all M, N. Corresponding limit laws are also obtained for the b(-)

function. The vector processes K*®) and IA(;@ (resp. K"®) and IA(;@S) are deterministic whereas
M) (resp. M b(y)) is a Gaussian martingale. As indicated both types of processes depend on
the initial position of the state variables, y.

In these expressions, the deterministic processes K correspond to the discretization error
resulting from the approximation scheme and therefore depend on the approximation method
used. Ideally, they should be zero. Using our transformation this is indeed the case if the
underlying state variables are given by an invertible, twice continuously differentiable function of
lognormal processes. It happens in this case that the approximation using the transformation is
also exact for the part of the SDE involving Riemann integrals. But in general K will be different
from zero. Therefore, although the estimators are consistent, a smaller K reduces the second
order bias. If in the construction of confidence intervals we do not correct for this second order bias
the size distortion'* will be smaller with the transformation whenever K* < K. Consequently, a
reduced second order bias will also improve the validity of statistical tests based on the law of M-
only. Furthermore, a small second order bias is potentially important for a good performance of
the estimators given a finite number of replications and discretization points.

The processes M~ are for both approximation methods the same. They result from the Monte
Carlo estimation of the conditional expectation and would not vanish even if we could sample
from the true joint law of H and the SPD £. The expressions for both processes K and M are
obtained in explicit form and described in detail in DGR (2000) and can therefore be used to
implement error corrections and variance reductions.

All the results discussed above are conditional on the knowledge of the state variables at a given
moment in time. If we are only interested at point estimators of the optimal composition of our
portfolio given a certain state the estimators of @ and b are all we have to calculate. But for other
purposes, such as risk management, we may well be interested in testing a given portfolio strategy
against a specific benchmark. Since this type of exercise requires the probabilistic structure of the
optimal portfolio strategy, we need the distribution of conditional estimators of the mean-variance
component, the IR-hedge and the MPR-hedge. Since we cannot sample from the true law of the
state variables it follows that we have to rely on an approximation of their dynamic evolution
described by the SDE. As we show in DGR (2000) the conditional estimators converge weakly

with order % with transformation and order \/—% without. The limit laws of these conditional

14Size distortion refers to the fact that the actual coverage probability is different from the prescribed level.
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estimators are non-Gaussian '° but known and therefore can be used to construct asymptotically
valid confidence intervals or statistical tests.

6 Calibration of the model.

In order to examine the economic properties of optimal portfolios we need to specify and calibrate
our model of the financial market. We will focus on the class of bivariate processes for (r,6)
described in the section above. Specifically we estimate the following IR-MPR model

dry = K (T —1y)dt — O‘r’/’tl/deVt, ro given (28)

db; = kg(0 — 0;)dt + aodWy, fp given (29)

where (K,,T,0r,7,, ko,0,09,7y) are constants.

We assume that the approximate discrete-time process is the true time-series model.'® The
econometric procedure described in this section is based on the maximization of the loglikelihood
of the following discrete-time model:

9, =18 4 k=) 4 oo, o given @0

n+1

Ot, .1 = 04, + /@9(5 —0,) + ogv, fp given. (31)

where 7, = 7h and 0., = 0,v/h and {t,, : n = 0,..., N} is a partition of [0,T]. In our estimations,
we consider a monthly frequency with A = %

Since the MPR, 6; = o; (11, — 1), is unobservable it must be filtered from the data. We take
two approaches.!” First we assume that the stock volatility o is constant. In other words, we
estimate the MPR from the conditional mean g, of the stock return series (taken as the SP500
index), assuming a simple AR(1) process for the conditional mean. The estimation period is
January 1965-June 1996.

In the continuous-time model the same Brownian motion applies to » and 6, but with a
perfect negative correlation. We therefore produce two sets of estimates, one with the correlation
coefficient between ;1 and vey1 left unconstrained, another one with a negative correlation
of —0.9.18 The results are presented in Tables 2 and 3 respectively. The estimates obtained
for the parameters of the interest rate CIR process are comparable to the values obtained by
Broze, Scaillet and Zakoian (1995) and Chan et al. (1992). The process slowly reverts to an
annualized mean of about 6% with a yearly volatility of about 1.76% for the unconstrained model

Y5The reader is referred to DGR (2000) for the exact expressions.

16 Estimating the parameters of a continuous-time diffusion model based on a discrete-time approximation of the
likelihood function leads to a discretization bias (Lo (1988)). However, for the monthly estimation of interest rate
processes, Broze, Scaillet and Zakoian (1995) use an indirect estimation to correct for the bias and find that the
bias is small for the mean-reversion x,, the mean 7 and the variance o,. We therefore follow the simpler approach
to calibrate the parameters. We also investigate the sensitivity of the results to changes in the parameters.

'"This filtering approach is in the spirit of Nelson and Foster (1994), although we do not claim any optimality
property for the GARCH(1,1) process we use.

18Since at a correlation of -1, the variance-covariance matrix would be singular, we chose the closest approximation
that did not create numerical problems.
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and around 3.6% for the constrained estimate. The estimation results for the MPR Orstein-
Uhlenbeck process show that the market price of risk reverts rather quickly to its mean. The
mean is about 8%, which is low compared with the standard estimates of the market price of
risk. The MPR volatility is about ten times the volatility of the interest rate process in both
the unconstrained and constrained estimations; almost perfect negative correlation between the
interest rate and the MPR forces upwards the volatilities of the two processes by a factor of two.
Given the low value of the MPR, we also investigate a specification where the interest rate enters
in the drift of the market price of risk, since excess returns are known to be predictable by the
interest rate. Equation (32) replaces (31)

01,1 =01, + Ko (6 —0y,)+ 6r,§:) + ogv, fp given. (32)

The estimation results, reported in Table 4, are quite similar to the previous specification, except
for the mean level of the MPR, which is more in line with the usual estimate of 0.3. The expected
negative coeflicient of the interest rate ¢ comes out quite significantly different from zero. As we
will see, this specification will only change the absolute magnitude of the stock position and the
hedging terms, but not the relative importance of the later with respect to the former.

To assess the robustness of the results obtained with a constant o,we use a GARCH (1,1) model
for the stock returns to construct the series for the market price of risk 6;. We keep as before
an AR(1) specification for the conditional mean of the stock returns. The results are reported in
Tables 5 and 6, where as before we estimate two versions of the model, with correlation coefficient
pro left unconstrained (Table 5) and constrained to a value of —0.9 (Table 6). The most notable
differences are a moderate increase (decrease) in the interest rate (MPR) speed of mean-reversion
by about 10%, an increase in the long run mean of the MPR by about 5% and a decrease in the
MPR volatility by about 7%. The estimates obtained for the other parameters are roughly the
same as before. Overall these differences should not exert much influence on the magnitude of
the hedging terms and will not be considered in our numerical computation of optimal portfolios.

7 Economic properties of optimal portfolios.

We now implement our numerical procedure for the model with (i) constant relative risk aversion,
(ii) a single risky stock with constant volatility, (iii) an MRSR (mean reverting - square root)
process for the interest rate and (iv) a MRG (mean-reverting Gaussian) process or a MRGID
(mean-reverting with interest rate dependence in the drift) process for the MPR. The uncertainty
is thus captured by a bivariate system of state variables (r,8). For this specification of preferences
and uncertainty we recall that the stock demand is

L1 L (1 5 (1
iy = Xtﬁa’let + X <E - 1) o ta(t,r) + X; (E — 1) o to(t,0y) (33)
Et { i}l/R /tT ,DtT’st}
a(t,ry) == =y , (34)
B e
E: 67" T Ddw?|
b(t, 975) = (35)

B e
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where Dyrs, Difls and &, - are provided in corollary 6. For the MRGID model see Appendix C.

Parameter values are set at their estimated values reported in Tables 3 and 4 and at values
equal or close to the means for rg and g; the volatility of the stock is set at its historical average
0.2. Specifically, in the first model (Table 3), we take k, = .0824, 7 = .0050 x 12, v, = .5,
o, = .01050 x /12 (recall that there is a minus sign in front of o, in (28)), 7o = .0050 x 12,
o = .20, kg = .6950, § = .0871, 75 = 0, 0g = .21, g = .10. In the second model, we take the
following values: k, = .0005, 7 = .0050 x 12, v, = .5, 0, = .01050 x /12, 7 = .0050 x 12,
o= .20, kg = .T771, 0 = .2675, 79 = 0, 09 = .205,6 = —26.29/12, g = .30. Simulations are
carried out using daily increments and 5,000 paths with variance reduction by antithetic variables
method (M = 5,000, h = 1/365). Since the results are very similar, except for the difference in
the absolute magnitude of the hedging terms as mentioned earlier, we only report in Table 7
summary results for the first model and provide a full-fledged analysis with graphs for the second
model.!”

7.1 Optimal portfolios and hedging components.

Figures 1-3 illustrate the behavior of the optimal portfolio and the hedging components relative
to the risk aversion coefficient and the investment horizon. Risk aversion varies from .5 to 5;
the investment horizon from 1 year to 5 years. As expected the fraction of wealth invested
in the stock decreases as risk aversion increases and increases as the horizon increases. The
hedges, however, display strikingly different behavior. The MPR-hedge displays mildly humped
decreasing-increasing behavior relative to risk aversion and appears to decrease relative to horizon.
The IR-hedge increases relative to both variables. As noted before the signs of the hedges change
depending on whether risk aversion exceeds or falls short of 1. This illustrates the standard
knife-edge behavior of (myopic) logarithmic utility. For investors that are more risk averse than
the Bernoulli investor the negative values of the MPR-hedge stem from the positive correlation
between the stock return and the MPR. Such an investor tries to hedge the additional risk away
by reducing his/her stock demand. Similarly the IR-hedge tends to boost stock demand since it
covaries negatively with the stock return. Note also that the combination of the two hedges is
negative for short investment horizons (less than 4 years in the numerical example) and positive
for longer holding periods. Thus, hedging behavior reduces (increases) the stock investment for
short run (long run) horizons relative to a pure mean-variance investor. In fact, the increase in
stock holdings increases with longer investment horizons.

[Insert figures 1-3 here]

Figures 4-6 display the behavior relative to the levels of the IR and the MPR rq, 6y for risk
aversion R = 2 and investment horizon T'—t = 1. Again the fraction invested in the stock varies
considerably over the range of initial values investigated, from over 90% of wealth to nearly 25%.
The hedge components’ ranges are much narrower: while the IR-hedge varies between about 1.8%
and 2.6%, the MPR-hedge lies between —1.8% and about —6%.

Second note that the fraction invested in the stock is an increasing function of the MPR and
is almost insensitive to the interest rate. As 6y increases the IR-hedge stays flat (figure 5) while

90f course the expressions for the Malliavin derivatives with respect to the interest rate and the MPR as well
as the state price density change compared to our previous expressions in section 5. The new expressions are given
in Appendix C.
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the MPR-hedge becomes more negative (figure 6). These effects, however, are of second order
relative to the increase in the mean-variance component of the stock demand. When rg increases
the IR-hedge increases moderately and becomes more positive (see figure 6): it tends to increase
stock demand. The MPR-hedge also increases but even more moderately. Combining these two
effects produces a mildly increasing total stock demand. For typical values of the MPR (between
.20 and .40) the sum of the hedging terms is negative and tends to reduce the overall demand for
the stock.

[Insert figures 4-6 here].

7.2 Market timing strategies.

In order to assess the importance and stability over time of our hedging demand estimates we
perform two market timing experiments. The first consists in drawing trajectories of the under-
lying state variable processes r, 0 and computing the portfolio and hedging demands along these
trajectories. The second experiment simulates the optimal portfolio for very long horizons and
using actual market data.

Results for the first experiment are reported in figures 7-10. A typical trajectory of the pair
(r,0) is drawn in figures 7 and 8. The interest rate is seen to vary between 3.9% and 5.4%; the
MPR takes values between —.08 and .30. Figure 9 illustrates the stock demand behavior for an
investor with risk aversion of 4 and a fixed horizon of 5 years. For the trajectory drawn the
proportion invested in the stock evolves between —3% and 40%. Close inspection of the graph,
however, shows that changes superior to 30% in the portfolio share are usually spread over periods
of 6 month or more. There are also long stretches of time, of duration larger than a year, over
which the stock share varies within at 10% interval.

Figure 10 which shows the respective contributions of the IR-hedge, the MPR-hedge and the
sum of the two hedges sheds further light on this issue. First note that the IR-hedge is remarkably
stable over time. It experiences very small fluctuations and decreases slowly toward zero due to
the maturity effect of the fixed horizon. It also remains positive throughout the period. The
MPR-hedge is negative and exhibits stronger volatility, which is not surprising since it is sensitive
to the MPR level which is more volatile. Within intervals of a year though the fluctuations rarely
exceed 5%. Again a trend toward zero is observed due to the fixed investment horizon. Both
hedges work in opposite direction and partly offset each other. The net hedging correction is
of the order of 5% — 10% at the beginning of the investment horizon, thus boosting the stock
demand. It then slowly converges toward zero taking negative values along the way, thus reducing
stock demand, in the last couple of years of the period. The net hedging correction inherits the
stability of its two components: its fluctuations rarely exceeds 5% over periods of a year or longer.
Over the whole 5 year period the hedging correction varies between —3% and 10%.

Although not reported in the paper similar properties are recorded when the analysis is per-
formed for rolling horizons of 2 years and 5 years (though hedging terms do not converge to zero
in that case) and for risk aversions in the range 2 — 4.

We conclude from this (representative) experiment that hedging components are remarkably
stable over time in the sense that they exhibit low volatility. The variation in the total stock
demand which is observed in figure 9 stems primarily from the variation of its mean variance
component.
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[Insert figures 7-10 here]

Our second experiment examines the actual behavior, based on market data, of the portfolio
over time for an investor with long horizon of about 30 years at the beginning of the period. Hedg-
ing demands and portfolio positions are computed using our model along the realized trajectory
of the IR and the MPR in the last 31.5 years (our estimation sample). Based on these data, we
compute each month of the sample the optimal share of the stock in the portfolio with and without
hedging for an investor with a relative risk aversion of 4 (computations are performed using 25,000
replications and variance reduction, i. e. 50,000 replications). As figure 11 shows, intertemporal
hedging will increase the optimal share to a reasonable level of about 60% at the beginning of
the investment horizon to roughly 10% at the end, with an average holding of 44%. This is in
sharp contrast with the myopic mean-variance optimal share which varies substantially around an
average level of about 10%. Note also that the hedging investor will short the stock by 15% only
once during the investment period (during the 1987 crash) and only because the triggering event
happened shortly (10 years) before the end of the investment horizon. The observed increase in
stock holdings comes mainly from the positive IR-hedge. From this realistic situation we then
conclude that intertemporal hedging has a fundamental impact when the investment horizon is
long. As in the previous experiment it tends to stabilize the overall stock demand.

[Insert figure 11 here]

8 Stochastic dividends (trivariate model).

Suppose now that the dividend-price ratio (DPR), denoted by p, is a relevant stochastic factor
which influences the evolution of the market price of risk. The following trivariate process for
(r,0,p) generalizes the MRGID model by incorporating such an effect

dry = kp(T — r¢)dt — arrtldet, ro given (36)
dOy = [kg(0 — 0p) + 6,1 + Sppi]dt + agdWr, Ao given (37)
dpe = kp(D — py)dt — (rpptl/deVt, ro given. (38)

In this specification the DPR follows a mean-reverting square root process and has a linear effect
on the drift of the MPR.

The model is estimated as previously: we maximize the loglikelihood of the discretized model
using for the MPR the filtered series based on an AR(1) specification and a constant stock
volatility. For the sake of brevity, we just report the estimated values of the parameters. These
are k, = 0.06977, 7 = 0.005 x 12, Ky = 0.9088, 0 = 0.1685, &, = —23.90/12, &, = 17.63/12, k), =
0.0344, p = 0.003 x 12, o, = 0.01227\/12, 7y = 0.16127, 0, = 0.004578+/12. It should, however,
be noted that these estimates, in particular those corresponding to the impact of the IR and the
DPR on the drift of the MPR, are statistically different from zero. Other parameters are also
seen to be close to the values obtained for the model with two state variables only.

Table 8 shows that optimal behavior changes when stochastic dividends are accounted for. The
most notable feature is the reversal in the sign of the MPR-hedge. Inspection of the trivariate
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process reveals the root of this behavior. Recall that the estimated model displays positive impact
of the dividend-price ratio on the drift of the MPR (6, = 17.63/12) and negative correlation
between stock returns and the dividend-price ratio (—oo, = —0.2 x 0.004578y/12). Under these
conditions hedging MPR-risk will involve two components. The first results from the positive
association between stock returns and innovations in the MPR. This hedge against direct MPR-
risk is negative, as in the earlier models. The second is the consequence of the indirect negative
association between the drift of the MPR and innovations in the dividend-price ratio. This hedge,
against indirect MPR-risk, is positive. Evidently, the two hedging motives work in opposite
direction. As illustrated in the table (see also figure 12) the second effect dominates in the
context of our estimated model and results in a positive overall MPR-hedge when risk aversion
exceeds unity.

9 Stochastic volatility with imperfect correlation (trivariate model).
Consider now the trivariate state variable model (7,6, 0) described by
dry = Kp(F — 1¢)dt — O'M"tl/2dW1t (39)
b, = [ke(8 — 0;) + 6rdt + oedWr, (40)

d(Tt = [I{U(E — O't) + O't{(slget]_{gzo} + 6299t1{9<0}}}dt + Ui/Q[)\lqu + )\QdWQt] (41)

where (79,00, 00) are given, the coefficients (k,,T, 0., Kg,0,08,00, Ko, 7,019, 629, A1, A2) are all con-
stant and W7, Wy are independent Brownian motion processes.

The model (39)-(41) contains several innovations relative to the prior MRSR-MRGID model.
The most important feature is that volatility is now stochastic. Furthermore, the volatility process
is imperfectly correlated with the interest rate and the MPR processes. As a result our basic model
is one with (apparently) incomplete markets. The drift of the volatility process also permits an
asymmetric dependence on the MPR process, conditioned on positive or negative realizations of
the MPR. This structure seeks to capture the notion that volatility is high when the magnitude
(absolute value) of the MPR is large. As in the MRGID model the MPR process also involves an
interaction in the drift with the rate of interest.

Even though this trivariate model (39)-(41) is driven by two underlying Brownian motions, and
hence appears to have incomplete markets since there are only two assets, the portfolio formulas
of the previous sections are still valid. The intuition for this seemingly surprising result is that
the state price density ¢ depends only on (r,6) which are independent of the risk Ws. Since the
investor’s marginal utility is proportional to the state price density at the optimum it follows
that optimal terminal wealth is independent of W5. The portfolio that finances optimal wealth,
in turn, will be independent of this idiosyncratic volatility risk. It follows that the individual
valuation of the risk W5 is null at the optimum.

Assuming CRRA preferences gives the optimal stock demand

~ 1 N 1 N 1
7ATt = Xtﬁo-t_lgt + Xt (E - 1> o't_la(t”r’t’ Qt) + Xt (E - 1> ()'t_lb(t’rt’et) (42)
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where £, o is defined in corollary 6 and where Dyrs, Di0;s are given in explicit form in appendix
C. The only notable impact of stochastic volatility is that it implies a continuous rescaling of the
stock demand as it changes over time: the volatility-scaled portfolio demand o7, is immune to
volatility risk.
The economic properties of the optimal portfolio follow directly from the scaling property.
The fraction of each hedging demand relative to total stock demand is insensitive to volatility

fluctuations. Since the magnitude of each component is simply rescaled as volatility changes the
portfolio components exhibit more volatility. This behavior is illustrated in figure 13.%°

a(t,re,0;) = (43)

b(t, e, 0;) = (44)

10 A multiasset-trivariate model: hedging with two mutual funds.

We now consider a financial market with three assets (2 risky and a riskless asset) and a triplet
of state variables. Our objectives are to provide a decomposition of the optimal portfolio and to
examine the effects of correlations on the hedging terms.

The state variables (r, 61, 6s) evolve according to

dry = Kp(F —1y)dt — UTrtlﬂchlt, ro given (45)
dby; = (/{1(51 — 01¢) + 61p1¢) dt + 0'?\/% (dWys + pgdWeay), 63 given (46)
dfs; = (K2(52 — Qgt) + (SQTTt) dt + O'g\/% (pgqu + adWQt) R 9(2) given (47)

where o =14 4/1 — pg and (Kr,T, 0, k1,01, 610,09, Ko, 02, 82-,0%, pp) are constants. In this for-

mulation af is the standard deviation of #;,7 = 1,2, and py represents the correlation coefficient
between 61 and 6. The correlation between the interest rate and the market price of Wi-risk is

negative and equals p,g, = —\/ %(1 + /1 — p3). The correlation with the market price of Wa-risk,

which equals p,.g, = —pp/ \/ 2(1+ /1 — p3), is negative (positive) when py is positive (negative).

20 Again for this extension of the basic two-state variable model, we maximize the loglikelihood of the discretized
model. The MPR series is now filtered with a GARCH(1,1) model with an AR(1) conditional mean as described
in section 6. The estimates of the parameters in (r,6) are found to be stable relative to those obtained in the
earlier bivariate model. For the volatility process we find evidence of different effects for the positive and negative
values of the MPR. This confirms the asymmetry reported in the literature. Estimated parameters are k, =
0.004575, 7 = 0.007 x 12, kg = 0.7772, 6 = 0.2689, 6§ = —26.3514/12, ko = 0.0445, & = 0.0594y12, 619 =
—0.2159/12, 699 = 0.1254/12, o, = 0.01045v/12, op = 0.185, A; = 0.00081, and Ay = +/0.012522 + 0.001742. The
numerical simulation is based on these estimates.
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When MPRs are positively correlated (pg positive) an increase in their correlation will increase
Pro, and decrease p,g, .
The riskless asset pays interest at the rate 7 in (45). The price S; of asset i, ¢ = 1,2, satisfies

dsjt + 61'tSjtdt = Sz’t [,uitdt + ag; (pidWhg + \/ 1-— deW2t>:| (48)

where the dividend rate ¢; and the drift p,; are stochastic. The volatility matrix of asset returns
is constant and assumed to be invertible (i.e. A = o102(p1\/1 — p5 — poy/1 — p3) # 0). Asset
prices induce the (bivariate) MPR process (01,62) whose evolution is described in (46)-(47).
The first risky asset can be interpreted as the market portfolio of risky stocks (SP500); the
second is a portfolio of assets (mutual fund) whose correlation with the market portfolio is p =
p1P2++/1 — py/1 — p3. The correlation coefficients between the portfolio returns and the interest
rate are respectively —p; and —ps.
In this setting with two assets the optimal portfolio is given by?!

11 [ ov/1 — p301; — o2py09 ]
RA | —o1+/1 — p3by + 01p1 02
+(l—1 1 '1_p2 :|a(tvrt76t)

R )Z 1—p?

5] -

frou/ Xy

1 1 [ o9y/1 — p2a — pyoaps ] o 1 =dir
+(=-1)— 2 01—=b; (t,r,6
(R )A | —o1/1 = pia+ pyoip, 1\/2a v (61, 60)

1 1-0'\/1—/) Tind
— —1)= 2 b (t,re, 0
+(R )A_ ﬂ}él 1 (aT’t7 t)

1 10 V1—pi—
(=1 PeT2\/1 — p5 — aoapy ]09 bgw(tﬂ’t,‘gt)

R )Z | —peo1y/1—pi +aoip 2\/20&

1 1 [ 09 1-— ind
Hg Vg | Ty | (9

1 1/R
a(t,r,0:) = Ey 1 1/R / Dyyrsds

where

l—l/R T
bdzr(t 71, 0¢) = B #1/3 / e*”i(sft)dWi? , 1=1,2
B 6]

1-1/R

T s
Wt =B Effim/ | e D ded | i=1.2
t

21 The structure of the optimal portfolio remains the same if the volatility coefficients o1, o2 are stochastic. As in
the prior section structure is preserved even when volatility risk can only be partially hedged with traded assets.
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1 " - . . . .
and Dyirs = —o,1r? exp(—% _]t (kp — T%)%ds - %/@T(s — t)) is nonpositive at all times (taking
o, > 0). The first line in (49) is the MV-demand, the second the IR-hedge, the third and fourth
the MPR(6;)-hedge and the last two the MPR(62)-hedge. The function a(t,r:,6:) is the cross-

moment between the cost of optimal consumption fi }1/ R and the sensitivity of the cumulative

interest rate to Wi-risk (i.e. ftT Dyyrsds). Since 01 and 2 depend on the interest rate (see (46)-
(47)), innovations in W; will have a direct effect on future values of the MPRs as well as an

indirect effect through the interest rate. The covariances Efw(t,rt,et) and Eznd(t,rt,et) capture,
respectively, these two aspects.

Let us focus on the effects of correlation between the two funds. Assume that all the coef-
ficients are positive except for the correlation coefficients p;, py, py which may take positive or
negative values. As it turns out the sign of all the demand components result from the spanning
properties of the two traded assets and the risk exposure of the present value of terminal (opti-
mal) consumption (PVC). This follows since the optimal portfolio is selected so as to finance this
present value.

In particular, note that the MV components result from the desire to synthesize the vector
(01, 602) which describes the risk exposure of the state price density and captures the impact of
the SPD on the PVC. When (61, 65) is a convex combination of the vectors generated by the two
funds returns, namely (p;,1/1 — p?) and (ps, /1 — p3) then both demands are positive. This is
the case when p;/\/1 — p? > 01/02 > py/+/1 — p3 > 0. Otherwise, one fund is held short and the
other long, and the MV demands are of opposite signs.

The IR-hedges in the two portfolio components reflect similar considerations. Here it is the
risk exposure of the PVC induced by the interest rate that is being synthesized, i.e. the vector

(1) [ ' }E(t,rt,«%).

Since this risk exposure is outside the convex cone generated by asset returns demands will
necessarily be of opposite sign. When risk aversion exceeds one interest rate risk has a positive
impact on the PVC ((1/R — 1)a(t,r,0;) > 0). If A > 0 fund one exhibits more sensitivity to
Wi-risk and will be held long. The second fund is used to neutralize the exposure to Wa-risk
induced by the IR-hedge component of fund 1. Combining the IR-hedging demands of the two
funds produces a perfect hedge against the impact of IR-risk on the PVC. The overall IR-hedge
achieved is positive when risk aversion exceeds 1. This parallels the results found in prior sections.

MPR-hedges display an interesting structure. Since MPRs respond directly to exogenous
shocks as well as indirectly through the interest dependence of their drift these MPR-hedges have
two components. The direct hedges correspond to the terms with (a¢/ \/ﬁ)w " (t, 7, 0;); indirect

hedges involve 62~T5§nd(t,rt,9t). Considerations similar to those above govern the signs of these
components. Let us focus on the MPR(f1)-hedge. We have:

1. direct hedge: fluctuations in the PVC related to the direct impact of (W7, Ws) on 6; are
described by the vector

1 a o 1 —air
R ! —— 5 (11, 6,).
G0 o | A= e
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When A >0, py <0and (1/R—1)b; (t,7,0;) is positive this wealth component is financed
by a long (short) position in fund 1 (fund 2). Under these conditions fund 1 is used to
span Wi-risk. This, however, will result in an overexposure to Wa-risk. Shorting fund 2 in
suitable proportion creates a perfect hedge. When one of the two funds provides a perfect

hedge (i.e. py/\/1 — p? = a/py or a/py = py/+/1 — p3) holdings of the other fund are null.

2. indirect hedge: fluctuations in the PVC induced through the interest rate dependence of 6
are described by

1 1 —ind
(E - 1) |: 0 :| 617‘b1 (tvrtaet)
Properties of the fund positions which synthesize this risk parallel the properties of the

IR-~hedges.

We now provide a numerical illustration of the properties described above as well as others.
Consider the symmetric case (k1,01,81,,01) = (ko,02,82,,02) and calibrate the model by using
the parameter estimates reported in section 6: k, = 0.06977, 7 = 0.005 X 12, K1 = Ko =
0.9088, 6; = 6y = 0.1685, 61, = 6o2r = —23.90/12, o, = 0.01227V/12, of = 0% = 0.16127.
The common volatilities of the two funds are 01 = 09 = 0.2 and the correlation of the market
portfolio with the interest rate is p; = 0.1. In order to simulate the portfolio components we set
initial values at rqg = .06, 19 = 059 = .10. The graphs show results for correlations between the
MPRs from pg = —0.9 to +0.9 with increment 0.1. Given that p; = 0.1, the correlation p, of the
second risky fund with the interest rate is chosen such that the implied correlation between the
risky assets, p = pipy + /1 — p3+/1 — p3 varies between —.2 and +1. Values for p, vary from
py = —0.99 to +.01 in increments of 0.01. Finally, risk aversion R = 4 and the investment period
is taken to be 5 years.

Figures 14 and 15 illustrate, respectively, the behaviors of the mean-variance components
and of the IR-hedges. In addition to the theoretical effects described above it should be noted
that the IR-hedges are nearly insensitive, and the MV components completely insensitive, to the
correlation between the MPRs. Both components increase in magnitude as the returns correlation
becomes more positive. Figure 16 shows that the hedge against 87 embedded in the demand for
fund 1 (fund 2) displays concavity (convexity) with respect to p, and is increasing (decreasing)
with respect to p. Figures 17 and 18 reveal that concavity (convexity) reflects the structure of
both the direct and indirect components. Furthermore the indirect hedge changes sign when p,
is in a neighborhood of £1. This follows from a sign reversal of the covariance Zzlnd(t, rt,0¢) when
pp approaches +1.

The hedge against 03 displays surprising behavior (figure 19). Its direct component, in the
demand for fund 1, exhibits a convex-concave structure (horizontal S-shape) relative to p, for large
values of p; a symmetric pattern characterizes the direct component in the demand for fund 2

(figures 20-21). This S-shape is a consequence of the behavior of the covariance BS" (t,r¢,0;) which
is convex with respect to pg and takes positive values in a neighborhood of pg = 1. For values of

po close to —1 direct hedging entails duplicating the vector 5‘5" (t,7r,6;)(pg, ) and this is achieved
by taking a long position in fund 1. As p, increases the covariance 5‘21" (t,7r,6;) becomes negative

which implies a short position in fund 1. As p, increases further the vector ng(t,rtﬁt)(pe,a)
enters the convex cone formed by asset returns. Both funds are then held long. Eventually, as
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pp approaches 1 the covariance Bgzr(t,rt,«%) becomes positive and a short position in fund 1 is
required to synthesize ng (t,7¢,0¢)(pg, ¥).

When combined the total MPR-hedging demand is concave (convex) for fund 1 (fund 2)
reflecting the dominance of the hedge against 6; (figure 22). Finally figures 23 and 24 show the
behavior of the sum of all the hedging components and the overall behavior of the portfolio.
The overall hedging demand reflects the reinforcing behaviors of the IR- and MPR-hedges. The
overall portfolio structure also exhibits the same pattern. In general hedging implies a significant
departure from mean-variance demand behavior.

[Insert figures 14-24 here.]

Numerical values for fund holdings and hedging demands are provided in Table 9 for selected
values of the correlation coefficients. They illustrate some of the features discussed above.

[Insert table 9 here.]

11 Conclusions.

In this paper we have developed a comprehensive approach for the calculation of the optimal
portfolio in the asset allocation problem. One major benefit of our method which relies on
Monte-Carlo simulation is its flexibility. Indeed the approach can be easily adapted to encompass
(i) any finite number of state variables, (ii) any process for the state variables which satisfies
the conditions described and (iii) any number of risky assets. It is also valid for any preference
relation in the von Neumann-Morgenstern class. This flexibility provides a distinct advantage
over alternative approaches to the problem.

The paper also derives a number of economic results which can be used as guidelines for sound
asset allocation rules. The lessons drawn from our simulations can be summarized in the following
observations:

1. Hedging components cannot be ignored for asset allocation purposes. Even for short invest-
ment horizons they imply an adjustment to mean-variance demands which may represent
up to 20% of the stock demand. For long investment horizons hedging behavior has a major
impact: the adjustment to mean-variance demands can represent up to 80% of the stock
demand.

2. Hedging corrections are fairly stable over time: market timing experiments show that the
volatility of the hedging components is low relative to the variation in the mean-variance
component.

3. The most important factors in optimal allocation shares are the risk aversion of the in-
vestor and the investment horizon. Of particular interest is the behavior of the optimal
stock demand relative to the investment horizon, namely the fact that long (short) invest-
ment horizons mandate an increase (decrease) in stock holdings relative to myopic behavior.
Although this effect was only recorded in the context of our basic bivariate model, it con-
firms the interest of tailoring investment products and strategies to different categories of
clienteles.
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4. Allocation shares are also remarkably stable relative to the other parameters of the model.
Variations of the order of 2 standard deviations around estimated parameter values have
little impact on the magnitude and the behavior of investment shares.

5. In multiasset models return correlations and correlations between returns and state variables
emerge as important factors composition of the optimal portfolio. Even for short horizons
asset demands can increase by a factor of 5 when assets returns are highly correlated.

Naturally, the performance of any asset allocation rule will also depend on the soundness of the
underlying model of financial markets. Clearly we do not suggest that the models investigated in
this paper are adequate in that respect. However, the approach that we have proposed is universal
in the sense that it can be used to address the asset allocation problem under complete markets
for any realistic specification of the uncertainty structure no matter how complex.

12 Appendix.

12.1 Appendix A: proofs.

Proof of Theorem 1: It follows from Cox and Huang (1989) and Karatzas, Lehoczky and Shreve
(1987) that optimal final wealth must be given by X = I(T,§€7) where I = [3yu] ™" is the inverse
marginal utility of consumption and § satisfies E[¢,I(T,5€¢,)] = . Since £,X; = E4[6,X7] we
have for J(t,y) := yI(t,y) that A

Xi = 1(t,9¢,) B[ J1 7]

where .
JtT = J(T7 yfT)
, ‘](tuygt)
Using the chain rule of Malliavin calculus and the relation —dI(t,y) = m (which
follows from the definition dxu(t,I1(t,y)) = y) we obtain
D, X 1 D,Eq[J,
At D+ t[Ji,7]
X §R(t, I(E,96,)) Ey[Ji7]
where R(t,x) = %t%ﬁ is the relative risk aversion of the investor. Taking the limit as

s Tt on both sides of this equation and using limgq DSXt = ﬁ;Ut, limgy; D&y = —£,0, and the
commutativity of the conditional expectation and Malliavin derivative operator then leads to

frl — th |: 1 / Et[,DtJt,T}:| ,1.
! R(t,1(t,9¢,)) " EqlJir] ¢
But since 00T (T i) (T, 62) a4, 5E)
D J — 2 iy T D A _ 7:1{ T 2 iy t D ~
W = ey DT e Jae) D

where Dyjéy = —ijép(0; + H ;) with
T T T T T
Ht,T :/ Dﬂ"sds +/ dWSIDtQS +/ dSQ;DtQS :/ Dtrsds +/ (dWsQ),DtQS
t t t t t
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and since

J(t,y) I(t,y) R(t,I(t,y)) ’
the second term in the expression for the optimal portfolio can be written
Et [DtJt T} 1 |:62<](T7 géT) ~ J(T7 gET) 82<](t7 yft) ~ :|
R S Y = N D - ~ ~ D
E[J,7] Bl i) T ) Jag)

_ 1 82J(T7QET)A ! / :l 82J(t7:g§t)A !
= TR { Tae) dr (0h+ Hir) | + g e

L [I(T ) e o
Et[Jt,T] Et |: (t yfg Oé(T, I(T7 yéT)) (et =+ thT):| + a(t7l(t7y§t))9t

- (oon ) st [

JtT / / :|
—-E; o dWs + 0.ds| D0,
[Et[JtT} ", [ D

where a; = a(t, I(t, ggt)) (note that ap = a(T, I(T, §¢r)) = o(T, X7))
Finally using B [tJTT] %% where %‘ 5= B¢, we obtain

, pe X ope x|
R(t.X) " | & R(.Xp)

—XT

. 1— R(t, X, 55 R(t,X;) [ R(T,Xr)—1
+Xt7R( 1 t) E? & R( ’ At) T / Dtrsds
R(t, X3) %tt R(T,X7) \ R(t Xt -1

Ut

—XT

+Xt71_R(t:Xt)EQ zr R(LX) R(T’):(T)_l /(dWQ)DtQ -1,
R(t,X;) | % R(T,Xr) \ R(t, X)) =1 ) )i

Now note that the chain rule of Malliavin calculus gives

Dy = 329(575/5)Dtys
Dirs = 0ar(s,Ys)DiYs

Furthermore (1) and Nualart (1995), section 2.2, p. 99-108, imply that D;Ys = (D14Y5, ..., DatYs)
solves d systems (one for each of the d Malliavin derivatives) of d stochastic differential equation

S S d
DuY, = DuYi+ / Diett? (0, Y2)dv + Dyt / <§ :aﬁ(v,mdwjv)
t t

J=1

= oL (t,Y)) + / Dop¥ (v Y)DthdU-l—/ Dy (ZO’ v Y)dVVﬂ,)

t j=1

= oy(tY) + / opt (v, Yy) DreYodv + / (Zagog(v,m)pkmdwjv)
Jt Jt

=1
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S S d
= YD+ [ o @ Y)PuYado - [ |3 0u0 (0 Y)W, | DY,
t t -
J=1

for k =1, ...,d. The solutions of these systems of linear equations are as stated in the theorem using
the fact that the quadratic variation of the martingale part is Z?Zl 820_5;-(1), YU)((‘JQU_’; (v,Yy)) dv
where O'Y] denotes the j* column of the matrix ¢¥. W

Proof of Proposition 4: Following the arguments of Doss (1977) we consider a function F :
[0,7] x Ry ~— Ry such that 0oF = L. Using 00 F = (0:1) = —%225 and Ito’s lemma implies that

1

dF(t,Y;) = [g — 0o + 81F] (t,Y;)dt + dW;.

so that F'(t,Y;) has the decomposition F(t,Y;) = Ny + W; where
J7|
dNt = ; — 5820' + 81F (t,n)dt
Since F' has an inverse G given by G(t, F(t,y)) = y we can write Y; = G(t, N; + W) and therefore
1
dNt = |:g — 5820' + 81F:| (t, G(t, Nt + Wt))dt

with Ny = F(0,y). Then since from assumptions (i) and (ii) G is continuously differentiable and
by theorem 2.2.1 of Nualart (1995) which needs assumption (iii) the process is in the domain of
the Malliavin derivative operator N € D%? we have for ¢ < s that

DtY; = GQG(S, NS + WS)Zt,S

where .
dZt,s =0y |:§ - 5620' + a1-F:| (S7G(57N5 + WS))(62G(57 Ns + WS))Zt,SdS

with Z;; = 1. Solving this linear SDE for Z; , and using the relations for derivatives of F' and its
inverse G produces the result stated. H.

Proof of Proposition 5: Since dY; = pu(t, Y:)dt + o(t,Y:)dW; we have

t T

Then for ¢ such that dx1c = 0 we have that

.t 1 st 6

V(YD) —0.Y0) = [ (016 + S0kb?l(s,Vo)ds + [ [2)(s VY.,
JO JO

But 0yt = % — ga%a and therefore

/t o5, v, =~ | (2 15, Ys)ds +6(t, Y5) — (0, Yo) — / 01+ 210200 — 000 (5, i)
0 0o 0 0
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Using this expression for the stochastic integral in the expression of the SPD provides (18).
To establish (19) use ]t D0 [dWs+0sds] = Di{ [0 [dW, +305ds]}, substitute the expression

for _]0 (s,Ys)dWs above on the right hand side, and compute the Malliavin derivative of the
expression in bracket. B

Proof of Corollary 7: Substituting 7,.,7¢ = 0 in the expressions for the Malliavin derivatives in
Proposition 4 gives Dyry, = 0, exp[—k,(v —t)] and D0, = g exp[—rg(v —t)]. Since R is constant
and Dyr, is deterministic we can then write

1-1/R

a(t, 0, S) = By ﬁ (/tT e I — dv) - ./t'T oy exp [ (v — 1)) dv.

Substituting the expression for D6, in b(t,r¢,0;) gives the formula in the lemma. B

Proof of equations (42)-(44): We conjecture that the individual price of Wa-risk is null. The
SPD is then given by the formula in theorem 3 where (r,0) satisfy (39)-(40). Since (7,0) is
independent of Wh-risk, optimal wealth X7 = I (T,y¢r) is independent of Wy. The Martingale
representation theorem and the Clark-Ocone formula imply the existence of a unique financing
portfolio which is given by (42)-(44). &

Proof of equation (49): Theorem 3 implies that the optimal portfolio is given by

. 5 101 1 1 1
Ty = Xt(O';:) 1 —915 -+ (— — l)a(t,rt, et) -+ (E — ]-)bl(t;?“t;et) -+ (E - 1)b2(t,rt,9t)

R R
where
1-1/R
a(t,ry,0;) = By Et[tfil/}?‘/t Dyryds
1 1/R

bz(ta Tt, et), = Et

Ql.,_
1 l/R / DibisdW | 1i=1,2.

Straightforward computations give the Malhavm derlvatlves

omy = [ o | - [ ko (e ms_t))]

by | Dubrs | _ [ olghge 0+ [Tt s Dundv |

( t 18) - D2t918 B O—?\/pg_e—ﬁl(s t)

(Diba2s)' = Dbz | _ oS0 4 [P em )y Dygrydy |
’ Doy i ()'?\/% |

28



which leads to

1-1/R

Eq _tllT—W.I.tTDItrsds 1-1/R

Ef[tT } 1 T
E, mft Doyrsds t

1-1/R
b f) = Po UlmEt E [1 1/5’} ] € dWi3
t
e ll/R e 16Dy dod W R
Tl | Ot 1 l/R 1T @VaWy g

and a symmetric expression for bo(t, 7, 0;).
Defining the determinant of the volatility matrix A = 109 (p1 1—p3—pyy/1— p%) we can
write the mean-variance term as

RV T RA| —oi/T- 2 oupy 09 |-

Substituting the expression for a(t, r,0;) gives the IR-hedge

— 1-1/R T
L0 talt e, 0) = (= — 1)~ [ o2v/1 — P }Et T / Dirads
t

(
R R A —o1y/1—p? Et|: 1- 1/R
Finally, substituting by (¢, 7, 6;) provides the MPR(61)-hedge
(5 = (01 ba(t,72,00)
1-1/R

1 1 [ o2y/1 = psa — pyoap ] g 1 ¢, /T k(s
- (= —-1)= 2 2 o E e Fs=0) g Q

(R )A { —01y/1 — p2a+ pyoipy NG E, [ 1- 1/R} . 1s
1 l/R

1 1 o24/1 — p% —Kk1(s—v
- Ya [ —on/i=g | 1 1/R 7 Dyrudvdi]

A symmetric expression holds for the MPR(Gg)—hedge. |

12.2 Appendix B: A representation of Malliavin derivatives of multivariate
diffusion processes.

Consider a d-dimensional process Y which satisfies the system of SDEs

dY; = p(t, Yy)dt + o(t,Y,)dWy; Yo =y
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where W is a d-dimensional Brownian motion process. For any d x 1 vector of functions f(¢,Y) let
01 f represent the d x 1 vector of first derivatives relative to time and 0z f the d X n matrix whose
rows are composed of the gradients relative to Y of the elements of f. The Malliavin derivative
of Y has the following alternative representation.

Proposition 8 If the following conditions hold
(i) differentiability of drift: € C1([0,T] x RY)
(ii) differentiability of volatility: o € C%([0,T] x R?)
(i1i) growth condition: u(t,0) and o(t,0) are bounded for all t € [0,T]
(iv) invertibility condition: det(co(t,y)) # 0 for all t € [0,T] and y € R?

(v) wolatility condition: the Lie algebra of the vector fields generated by the columns of o,
L{o1,...,04} is Abelian, i.e. (020;)0; = (020j)0; for alli,j =1,...,d where Oz0; is the
d x d Jacobian matrix with respect to y of the d x 1 vector function o;.

then we have for t < s that
DiYs = 0'(37Ys)Zt,s

where the d x d process Zy s satisfies
1
dZ, s = {82 [(0)_1;4—1— §H} + 31(0)_1] (5,Ys)o(s,Ys)Z; sds (50)

subject to the boundary condition Zyy = Iq (d x d-identity matrixz) where
H=I®1)(Ko(1ledo))l (51)

with K for the Jacobian matriz of o= given by
1
K = —5[(0 ® ') 10y (o) + [(820") (0! @ )71, ). (52)

The operators @ and © represent, respectively, the Kronecker and Hadamard products,®? whereas
the stack operator [-], operates on a d x d* matriz B = [B, ..., By) where B; are d-dimensional
square matrices as follows: [B], = [(B1),...,(Ba)']".

Assumption (v) in this proposition guarantees that there exists F such that o F = o~

Since by (iv) F' has an inverse G, say, condition (v) could equivalently be written as 0;G;(t,2) =
0;,(t,G(t,z)). The assumption is automatically satisfied if the state variables do not interact
with each other, ie. if 0(t,Y;) = (fj(t,Ytj) for j = 1,...,d. The one dimensional case treated
earlier falls in this category.

*2The Kronecker product of a vector Y and a matrix A = [a;;] is X ® A = [Yas;]. The Hadamard product of
two matrices A and B is A ©® B = [ai ;b ;], i.e. the matrix composed of the direct products of the corresponding
elements in the two matrices.
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Proof of Proposition 8: The proof parallels the one dimensional case. Assumption (v) ensures
the existence of a d x 1 vector of functions F : [0,T] x R +— R% such that §,F = o~ 1. Using
0o F = Oho~1 we get by the identification theorem for Hessian matrices of vector functions
(theorem 6.7. of Magnus and Neudecker (1988)) that

1
OnF(t,y) = —5[(c ® o)1 05(0") + [(B20") (0 ® 7) 7L (1, ) (53)
where the stack operator [], acts in the following manner: for a d x d* matrix B = [By, ..., By
where B; are d-dimensional square matrices we have [B], = [(B1)',...,(Bqg)']. The use of the

stack operator is necessary to guarantee that the components 022 F;(t,y) which arise in blocks in
022 F(t,y) remain symmetric.
Using Ito’s lemma applied to each element of F' we get

1
dF‘Z'(t, Y;g) = [31F2 + 82E,M + 5757’@66(822}‘_%0'/0')](@ Y;g)dt + [82EO‘] (t, Y;g)dVVt
for i = 1,...,d. Stacking these SDEs for ¢ = 1,...,d one below the other gives for F'(¢,Y;),

1
dF(t,Y;) = |07 u + 5H + O\ F| (t,Y;)dt 4 dW;

where H' = [trace(OaaF10'0), . .. trace(OaaFqc’c)]. To obtain the expression (51) for H note that
trace(AB’) = 1'(A® B)1 where © is the Hadamard product, i.e. A® B = [[a; jb; ;]]. Now we can
write the matrix H as follows

H =[1((002F1) ©d'o)1,...,1((022Fy) ®c’'0)1]
which is equivalent to
H=[(I®1)[((02F1) ®d'a),...,((0aFy) ®c'o)]1.
But since 9 F = [(002F1), .. ., (902Fy)'] we get
[((02F1) ©0'0),...,((02Fu) ©®0'0)]' = (0 F © (1 ®0'0))

and therefore H = (I ® 1')(022F © (1 ® 0'0))1 where 022 F (t,y) is as given in (53). Thus, H is
obtained by multiplying the Hessian of each element of F' element by element with the matrix o’c
then summing over all elements and arranging the result in a column vector whose first element
is obtained by performing the same operation for F}, the second for F5 and so on until F,. This
establishes (51).

Thus, using these expressions we see that F(t,Y;) = Ny + Wy where

1
dN; = {(f‘lu +5H + 81F] (t,Y;)dt.

Since the determinant of the Jacobian 0o F differs from 0 (assumption (iv)) the vector F(t,y)
has a unique inverse G defined by G(t, F(t,y)) = y. We can then write Y; = G(t, Ny + W;) and
therefore

1
dN; = [(f‘l,u + §H + 31F] (t,G(t, Ny + Wy))dt
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with Ng = F(0,y). Then since from assumptions (i)-(ii) G is continuously differentiable and by
theorem 2.2.1 of Nualart (1995), which requires assumption (iii), the process is in the domain of
the Malliavin derivative operator N € D%? we have for ¢ < s that

DtY; = GQG(S, NS + WS)Zt,S

where
1
dZt,s =0y O'_llu + §H + o0 F (87 G(87 Ns + WS))(82G(57 Ns + WS))Zt,SdS

with Z;; = I4. Since 02G(s, Ns + Wy)02F (s,Y;) = I we have that 0,G(s, Ny + W) = o(s,Y5).
Substituting in the equation above leads to the result in the proposition. B

12.3 Appendix C: the MRGID model.

We consider the following interest rate - market price of risk model with interaction in the drift
of the MPR

dri = kp (T — 1¢)dt + 0pr/Ted W3, ro given (54)
df; = (ko(0 — 6y) + bgry) dt + 09dWy, g given (55)

where (k,,T,0.,kg,0,089,09) are nonnegative constants. The transition from the general model
with state variables Y to the model (54)-(55) with state variables (r,6) is immediate since the
Malliavin derivative D0, can now be computed directly from the process (55). Taking account
of the specific structure (54)-(55) then leads to

Proposition 9 In the financial market (54)-(55) the optimal portfolio is given by (5) with

D;ry = /7,0y exp [—% ./t.v <m(1 +Fi) — 1aZ(i)> du]

Tu 4 Tu

D,0, = oge 01 1§, / e K0W=)D,pr ds.
Jt

The SPD is then

t
& =exp [—/ [rs + (1 — @)93 — @@93 _
JO

) 1
2 o] og o)

Osrs)ds] (02 — 63) + 10‘975
2 2
and the stochastic integral for the MPR-hedge becomes

T T
/ DyO,[dW, + 0,ds] = / [[(1 4 ohoy _Fog O
Jt Jt

0 1
—TS}DtQS + —QSDH"S] ds + —QTDtQT — (915.
g9 0o 0o 0o 0o
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12.4 Appendix D: asymptotic laws of state variables estimators.

In this appendix we report theorems from Detemple, Garcia and Rindisbacher (2000) providing
the asymptotic laws of estimators of functionals of Brownian motions. The proofs of these results
are based on Kurtz and Protter (1991) and Jacod and Protter (1998). Consider the SDE of the
vector of state variables Y; after the Doss transformation

d
Ay, = m(Yy)dt + " dW} (56)
j=1
with
m(Ys) = [(0) " in" + tr[a{( )i () (Y5), (57)

and let f/%v denote the estimator of YT based on a Euler scheme. Our next theorem characterizes
the estimation error.

Theorem 10 The asymptotic law of the estimator of the state variables Y is given by
Ulr = N —Yr) = Uy
where

A T 1, . 1
U{T = —o¥ (V) Qur /t Qt,gam(ys) [E(m(Ys)ds + dWy) + EdBS ) (58)

with

= exp ([ l0m)o(v2)ds). (59)

In addition to providing an explicit expression for the asymptotic law of the estimator, theorem
10 also demonstrates a speed of convergence of order 1/N. These results can be contrasted with
those obtained when state variables are estimated before transformation. Applying a Euler scheme
to estimate the solution of (1) leads to

UF = VNN - = 0

where .
~ 1 - v
U= =W, | Q) do; Y,)dBMi. 60
i 73t | S h;I{( o) (V) (60)
with
5 w d
Q4 = exp / (oY (V) — 22(80 ds—i—Z/ 80 Yi)dWw? | . (61)
Jt =

In this case the resulting speed of convergence is 1/ V/N. These results illustrate the increase
in the speed of convergence achieved by using the Doss transformation. They also highlights
the fact that the limit law is different and involves an exponential of a bounded total variation
process instead of a stochastic integral. DGR (2000) provides similar theorems for the Malliavin
derivatives and the functionals that appear in the hedging terms a(t,Y;) and b(¢, ;). The increased
rate of convergence is important when computing conditional estimators of the hedging terms
based on an approximation of the dynamic evolution of the state variables.
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Table 1- Comparison of the speeds of convergence of the discretization

schemes when the IR follows a MRSR process.

N T Dr
Euler Euler-Transform Euler Euler-Transform

2 0.000115598  5.49255e-06 5.81463e-07  3.47457e-07
4 0.000111128 3.37985e-06 3.58341e-07 2.13681e-07
8 8.74541e-05  1.82631e-06 2.33208e-07  1.15422e-07
16  6.50156e-05 9.41716e-07 1.6312e-07  5.9616e-08
32  4.66084e-05  4.7979e-07 1.16983e-07  3.03396e-08
64  3.336e-05 2.40698e-07 8.29213e-08  1.52396e-08
128 2.3761e-05 1.20386e-07 5.97503e-08  7.63041e-09
256 1.68824e-05  5.83759e-08 4.18739e-08  3.69586e-09
512 1.19618e-05 2.53747e-08 3.00371e-08 1.60477e-09

Table 2 - Unconstrained monthly estimates of the bivariate interest

rate-MPR process with constant stock volatility

Parameters | ML estimates | Standard Errors
KrM 0.0265 0.0107
T 0.0053 0.0007
Ko 0.6528 0.0482
[ 0.0846 0.0084
O 0.0049 0.0002
g 0.1052 0.0039
Pro -0.1651 0.0539

Table 3 - Constrained (with p,q set at -0.9) monthly estimates of the bivariate

interest rate-MPR process with constant stock volatility

Parameters | ML estimates | Standard Errors
Ky M 0.0824 0.0116
T 0.0050 0.0005
Ko 0.6950 0.0507
0 0.0871 0.0161
oy 0.0105 0.0004
g 0.2125 0.0080
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Table 4 - Constrained (with p,¢ set at -0.9) monthly estimates of the bivariate
interest rate-MPR process with constant stock volatility with r;_; in the drift of MPR

Parameters | ML estimates | Standard Errors
KM 0.0005 0.0185
T 0.0051 0.0010
Ko 0.7771 0.0484
[ 0.2675 0.0348
oy 0.0105 0.0004
g 0.2050 0.0073
1) -26.2469 4.9686

Table 5 - Unconstrained monthly estimates of the bivariate
interest rate-MPR process with a GARCH stock conditional variance

Parameters | ML estimates | Standard Errors
KrM 0.0290 0.0106
T 0.0053 0.0006
Ko 0.5975 0.0464
[ 0.0882 0.0083
oy 0.0049 0.0002
g 0.0979 0.0035
Pro -0.1863 0.052

Table 6 - Constrained (with p,g set at -0.9) monthly estimates of the
bivariate interest rate-MPR process with a GARCH
stock conditional variance

Parameters | ML estimates | Standard Errors
KM 0.0947 0.0128
T 0.0050 0.0004
Ko 0.6826 0.0507
0 0.0900 0.0147
O 0.0104 0.0004
g 0.1928 0.0070
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Table 7 - Shares of the portfolio in the stock and Hedging Components for Model 1.

Investment horizon 1 2 3 4 )

R—9 Stock demand 25.4 | 26.1 | 27.0 | 29.2 | 30.5
MPR-hedge 1.7 1 -3.0(-39 | -35 | -3.7

Interest rate hedge | 2.1 | 4.1 | 59 | 7.6 | 9.2

Risk aversion 0.5 1 1.5 4 )
T—1 Stock demand 113.0 | 50.0 | 33.2 | 14.4 | 12.3
MPR-hedge 172 | 0.0 | -1.6 | -1.3 | -1.24

Interest rate hedge | -4.3 | 0.0 | 1.4 | 3.2 | 34

Table 8 - Dividend-Price Ratio Model - Shares of the portfolio in the stock
and Hedging Components for Model 1 (o = 0.20).

Investment horizon 1 2 3 4 5
R4 Stock demand 30.18 | 39.92 | 46.88 | 52.45 | 57.27
MPR-hedge 13.90 | 20.13 | 23.82 | 26.35 | 28.33
Interest rate hedge | 3.78 | 7.29 [ 10.56 | 13.60 | 16.43

Risk aversion 0.5 1 1.5 2 5

71 Stock demand 81.42 | 50.0 | 40.86 | 36.49 | 28.94
MPR-hedge -13.56 | 0.0 | 5.85 | 898 | 14.91

Interest rate hedge | -5.02 | 0.0 | 1.68 | 2.52 | 4.03
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Table 9 - Multiasset model - Shares invested
in the two Funds and Hedging Components (case p, < 0).

Returns Correlation: p =0

Fund | py | MV-Comp. [ IR-H | MPRI-H | MPR2-H | H-Comp. | Holdings
1 -0.9 | 13.68594 1.62469 -0.46143 | -2.86238 | -1.69912 | 11.98682
2 -11.18734 | -16.18569 | -0.54965 | -2.24462 | -18.97997 | -30.16731
1 -0.6 | 13.68594 1.61552 -1.85189 | 3.16808 | 2.93171 16.61764
2 -11.18734 | -16.09436 | -8.47951 | 1.43846 | -23.13540 | -34.32275
1 -0.3 | 13.68594 1.61200 | -0.56593 | 6.75339 | 7.79946 21.48540
2 -11.18734 | -16.05926 | -12.29448 | 1.77988 | -26.57386 | -37.76121
1 0.0 | 13.68594 1.61197 1.28385 6.38567 | 9.28149 22.96742
2 -11.18734 | -16.05898 | -12.79016 | 0.67745 | -28.17169 | -39.35903
1 0.3 | 13.68594 1.61506 2.55858 4.96426 | 9.13790 22.82384
2 -11.18734 | -16.08978 | -10.21850 | -0.23006 | -26.53834 | -37.72568
1 0.6 | 13.68594 1.61690 3.73219 2.63805 | 7.98715 21.67309
2 -11.18734 | -16.10812 | -8.57007 | -0.57762 | -25.25582 | -36.44316
1 0.9 | 13.68594 1.62484 1.22769 -3.01071 | -0.15819 | 13.52775
2 -11.18734 | -16.18717 | -1.46995 | 1.47530 | -16.18182 | -27.36916

Returns Correlation: p = .5

Fund ‘ Po ‘ MV-Comp. ‘ IR-H | MPR1-H ‘ MPR2-H ‘ H-Comp. | Holdings
1 -0.9 | 20.14629 10.97144 | -0.14402 | -1.56618 | 9.26124 29.40754
2 -12.91800 | -18.68958 | -0.63468 | -2.59186 | -21.91612 | -34.83412
1 -0.6 | 20.14629 10.90953 | 3.04477 233741 | 16.29171 | 36.43800
2 -12.91800 | -18.58412 | -9.79127 | 1.66099 | -26.71440 | -39.63239
1 -0.3 | 20.14629 10.88574 | 6.53376 5.72556 | 23.14507 | 43.29136
2 -12.91800 | -18.54359 | -14.19641 | 2.05522 | -30.68478 | -43.60277
1 0.0 | 20.14629 10.88555 | 8.66978 5.99446 | 25.54979 | 45.69608
2 -12.91800 | -18.54326 | -14.76876 | 0.78225 | -32.52978 | -45.44777
1 0.3 | 20.14629 10.90643 | 8.45946 5.09711 | 24.46300 | 44.60929
2 -12.91800 | -18.57883 | -11.79928 | -0.26565 | -30.64375 | -43.56175
1 0.6 | 20.14629 10.91886 | 8.68116 297161 | 22.57163 | 42.71792
2 -12.91800 | -18.60001 | -9.89584 | -0.66698 | -29.16283 | -42.08083
1 0.9 | 20.14629 10.97244 | 2.07654 | -3.86265 | 9.18633 29.33262
2 -12.91800 | -18.69129 | -1.69734 | 1.70352 | -18.68511 | -31.60311
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Returns Correlation: p = .9

Fund | Po | MV-Comp. | IR-H | MPR1-H | MPR2-H | H-Comp. | Holdings
1 -0.9 | 36.78663 35.04645 | 0.67354 1.77253 | 37.49252 | 74.27915
2 -25.66581 -37.13294 | -1.26099 | -5.14958 | -43.54350 | -69.20931
1 -0.6 | 36.78663 34.84868 | 15.65741 | 0.19780 | 50.70389 | 87.49052
2 -25.66581 -36.92339 | -19.45354 | 3.30010 | -53.07684 | -78.74264
1 -0.3 | 36.78663 34.77270 | 24.82088 | 3.07813 | 62.67170 | 99.45833
2 -25.66581 -36.84288 | -28.20578 | 4.08337 | -60.96529 | -86.6311
1 0.0 | 36.78663 34.77207 | 27.69419 | 4.98680 | 67.45306 | 104.23969
2 -25.66581 -36.84222 | -29.34296 | 1.55420 | -64.63098 | -90.2967
1 0.3 | 36.78663 34.83877 | 23.65871 | 5.43931 | 63.93679 | 100.7234
2 -25.66581 -36.91289 | -23.44310 | -0.52779 | -60.88378 | -86.5495
1 0.6 | 36.78663 34.87849 | 21.42850 | 3.83078 | 60.13777 | 96.9244
2 -25.66581 -36.95497 | -19.66131 | -1.32517 | -57.94146 | -83.6072
1 0.9 | 36.78663 35.04965 | 4.26297 -6.05705 | 33.25558 | 70.0422
2 -25.66581 -37.13633 | -3.37232 | 3.38461 | -37.12405 | -62.78985
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Figure 1: Share of portfolio invested in stock as a function of time and risk aversion.

R—9 Investment horizon 1 2 3 4 5
- Stock demand 7271732744 76.7 | 78.3
T—1 Risk aversion 0.5 1 3 4 5

o Stock demand | 339.1 | 150.0 | 48.9 | 37.3 | 30.5

Figure 2: Share of the MPR hedge as a function of time and risk aversion.

R—2 Investment horizon 1 2 3 4 5
o MPR-hedge 45 1|-63|-74|-73]-8
T—1 Risk aversion | .05 1 3 4 5

MPR-hedge | 43.5| 0.0 | 41| -35]-35
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Figure 3: Share of the interest rate hedge as a function of time and risk aversion.

R_9 Investment horizon | 1 2 3 4 )
N Interest rate hedge | 2.2 | 4.5 | 6.7 | 9.0 | 11.3

T—1 Risk aversion 05 | 1 3 4 5
n Interest rate hedge | -4.4 | 0.0 | 3.0 | 3.4 | 3.6

Figure 4: Stock demand behavior relative to rg and 6. Interest rate varies between 0.04 and 0.08;
MPR between .05 and .40.

6% MPR 0.10 | 0.20 | 0.40

P00 MStock demand | 254 | 49.1 | 96.4

B Interest rate (%) | 4 6 8
MPR=.25 Stock demand | 60.3 | 60.9 | 61.5
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Figure 5: Interest rate hedge behavior relative to rg and 6g. Interest rate varies between 0.04 and
0.08; MPR between .05 and .40.

—6% MPR 0.10 | 0.20 | 0.40
7% | [ Interest rate hedge | 2.2 | 2.2 | 2.2
B Interest rate(%) 4 16 |8

MPR=.25 Interest rate hedge | 1.8 | 2.2 | 2.6

Figure 6: MPR -hedge behavior relative to rg and 6g. Interest rate varies between 0.04 and 0.11;
MPR between .10 and .45.

6% MPR 0.10 [ 0.20 | 0.40
" | [ MPR-hedge | -1.8 [ -3.2 | 5.8

- IR(%) 416 | 8
MPR=.25 MPR-hedge | -4.0 | -3.8 | -3.6
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Figure 7: Simulated Path for Interest Rate.
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Figure 8: Simulated Path for Market Price of Risk.
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Figure 9: Fixed 5-year Horizon - Share in Stocks - R = 4.

15 T T T T

5t J

-10 L L L
0 100 200 300 400 500

Figure 10: Fixed 5-year Horizon - Hedging Shares (top to bottom): Interest Rate, Total, MPR-R
=4.
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Figure 11: Share of Stock in Portfolio with (top) and without (bottom) hedging - Fixed Horizon
of 31.5 years (our sample).
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Figure 12: Model with Stochastic Dividends - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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Figure 13: Model with Stochastic Volatility - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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Figure 14: Mean-Variance Component: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 15

Fund 1 (plain) and Fund 2 (dotted line)
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Figure 17: Direct MPR Hedge against first MPR-Risk: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 18: Indirect MPR Hedge against first MPR-Risk: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 19: Hedge against MPR2-Risk: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 20: Direct MPR Hedge against second MPR-Risk: Fund 1 (plain) and Fund 2 (dotted
line)
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Indirect MPR Hedge against second MPR-Risk
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Figure 21: Indirect MPR Hedge against second MPR-Risk: Fund 1 (plain) and Fund 2 (dotted

line)
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Figure 22: MPR Hedge: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 23: Hedge Demand: Fund 1 (plain) and Fund 2 (dotted line)
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Figure 24: Total Demand: Fund 1 (plain) and Fund 2 (dotted line)
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