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1 Introduction

A necessary requirement of any theoretical model is that it be able to explain
to a reasonable degree of approximation observed empirical phenomena. It has
been found by many analysts that labor market time series seem to display some
salient features, often related to asymmetric cycles. This paper proposes
modifying traditional dynamic labor demand models in order to make them better
suited for the task of capturing these observed special features of labor market
time series.

In this paper, it is shown how slight modifications to the standard dynamic
labor demand model can generate asymmetric employment cycles. More
specifically, it is assumed that the maximizing firm faces asymmetric employment
adjustment costs when determining its optimal labor input level." The model
shows that this asymmetry in the turnover cost parameter induces an asymmetric
employment cycle. The reduced form found resembles a nonlinear model which
is well-known for its ability to explain asymmetric cycles: a threshold
autoregressive (TAR) model with two regimes and a switching-regime index that
reflects the past history of employment changes.” If turnover costs are
asymmetric, the firm will change its labor input in any period in a way that depends
on whether employment was rising or falling in the previous period.

Why would it be expected that this model would provide a better fit of
employment cycles? A well known fact in macroeconometric research is that
traditional models of the business cycle are not capable of producing nonlinear
reduced forms. In general, nonlinear models or asymmetric shocks are needed to
generate asymmetric cycles, since stationary Gaussian linear ARMA models are
incapable of generating them. Unless one assumes that the stochastic disturbance
terms in these models are drawn from asymmetric probability distributions (thus,
non-Gaussian), they are not suited for fitting data exhibiting strong asymmetry.
This point has been made by several authors, including Blatt (1980), Wecker
(1981), Tong (1990), Neftci (1984), and Brock and Sayers (1988). The main
lesson from this debate is that, in the absence of asymmetric stochastic shocks,
these models do not fit well the observation of some nonlinear phenomena often
found in economic time series, such as time irreversibility and asymmetric limit
cycles.

On the other hand, as mentioned above, empirical studies of asymmetries
and nonlinearities tend to find that labor market variables are asymmetric and
nonlinear (see, for instance, Neftci (1984), DeLong and Summers (1986), and

' Pfann and Verspagen (1989) and Jaramillo et al. (1991) provide some
evidence that employment adjustment costs are in fact asymmetric in Dutch and
Italy manufacturing sectors, respectively. Nickell (1986) in his comprehensive
survey of dynamic labor demand models stresses the implausibility of symmetric
employment adjustment costs.

2 The threshold autoregressive model was first proposed by Tong (1978) and
further discussed by Tong and Lim (1980) and Tong (1990).
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Brock and Sayers (1988)).° This paper uses quarterly U.S. airline industry data at
the firm level between 1959 and 1977 in order to assess empirically the presence
of asymmetries and nonlinearities in microeconomic employment cycles.*

The strategy of the empirical exercise of this paper is to search for
asymmetries in each of the series (each pair of firm-worker category) in the data
set. Standard asymmetry and nonlinearity tests are performed, showing that in
fact about half of the series appear asymmetric.

These findings would go against using linear models when studying firm
employment cycles. However, the traditional dynamic labor demand model (a /a
Sargent (1978) and Nickell (19886)) still used in most studies is linear. | thus argue
that better forecasts can be obtained with nonlinear models of the threshold
autoregressive (TAR) type when employment turnover costs are asymmetric.

In fact, | attempt to fit the threshold autoregressive (TAR) model to each of
the series in the airline sample. | find that the TAR model reduces the residual
variance substantially (compared to the linear model) in about half of the series.

The paper is organized as follows. The next section proposes a dynamic
labor demand model with asymmetric adjustment costs assuming a quadratic
structure and a two-state Markov environment. Section 3 discusses qualitative
evidence about the size and structure of employment adjustment costs in the U.S.
airline industry. Section 4 describes the data. Section 5 tests whether the
employment growth series are asymmetric or not, by computing skewness
coefficients. Section 6 applies several linearity tests available in the literature to
the data. Section 7 then fits the threshold autoregressive (TAR) nonlinear model
to each series and compares it to the linear model. Finally, section 3.8 concludes.

2 A Dynamic Labor Demand Model with Asymmetric Adjustment Costs

In a recent paper, Caballero and Engel (1993) defined a hazard employment
adjustment function as the relation linking the probability a firm adjusts its labor
input in a given period to the magnitude of the deviation from the optimum. They
noted that in the standard partial adjustment equation derived from a dynamic labor
demand model with symmetric quadratic adjustment costs, this hazard function is
constant. Moreover, they show how a piecewise constant hazard function which
takes different values depending on whether the firm’s deviation from the optimum
is positive or negative can generate an asymmetric aggregate employment cycle.
In this sub-section, | show how a firm’s piecewise hazard function can be derived
from a standard dynamic labor demand maximization setup once the possibility of
asymmetric employment adjustment costs is considered.

¥ See Sichel (1989) for opposite findings, though.

* The reason | choose to study employment behavior in the airline industry is
the availability of an extremely rich data set. Belonging to a heavily regulated
industry between 1938 and 1978, airlines were required to report a substantial
amount of statistical information to the regulating agency, the Civil Aeronautics
Board (CAB), including labor practices. The data are disaggregated by category of
worker for each firm, are available at a relatively high frequency (quarterly), and
include employment, wages and activity variables ({revenues).
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The intertemporal firm’s profit maximization problem in discrete time is:

t+1

(1) Max E, {3y ' [R(Z. N,) - W, N, -C(x,)]1}

where E, denotes expectations formed at time t; 0<fB<1 is a real discount factor
assumed to be constant for analytical simplicity; R(.) is the firm’s real operating
revenue function, which is assumed to be increasing and concave in N, the
employment level; Z, is a shock to the general state of the firm’s business
conditions as in Bertola (1990) and Burgess (1992);° W, is the real wage rate
taken as given by the firm; C(.) is the adjustment cost function; and x, represents
employment changes.®

In this paper, the model is solved assuming a convex (quadratic) structure
for C(.) and a linear-quadratic revenue function. Contrary to previous partial-
adjustment models, however, | allow for the possibility of asymmetric adjustment
costs, introducing a cost of firing parameter (a,) that can be different from a hiring
cost parameter (a,). Note that the symmetric adjustment cost case is nested in
this approach - obviously, in the symmetric case, a.=a,’

A simple dynamic environment is assumed - a two-state Markov world in
which each state is totally defined by the value of a technology parameter Z, (Z,
is observed in the good state and Z; in the bad state, Z,>Z,). The probability of
persisting in each state is given by m, where i=G,B index each state.

C(x,) is given by:

(2) C(x.) =

N
Q
'._I
Lndi ]
+

where 1,,is the indicator function and all other terms have been previously defined.
The real operating revenue function is given by:

(3) R(2,,N,) = ZN, - %be

where Z, can be viewed as an additive shock to marginal product of labor at time
t and b is a technology parameter as in Sargent (1987).

The modeling strategy is to derive one Euler equation for each of 2 regimes:
one in which employment is rising at time t (x,>0) and another in which

s Burgess (1992) models {Z,} as a vector of forcing variables affecting profits
such as capital stock, technical progress, world trade shocks, and competitiveness.

s An alternative to the competitive dynamic labor demand model above is the
efficient contract model in which firms and unions maximize a joint utility function.
Card (1986a), however, found no evidence that an efficient contract model
outperforms the competitive model for mechanics in the airline industry.

’ Gonzaga (1993) also studies the linear (asymmetric) cost of adjustment
structure. In this paper, however, the intention is to compare the standard partial
adjustment model with an "asymmetric partial-adjustment” model.
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employment is decreasing at time ¢ (x,<0). An asymmetric employment cycle will
result whenever the speed of adjustment (the coefficient on lagged employment)
is different across these two regimes.

Assume first that the firm is hiring new workers at time t (x,>0), /.e., that
the firm is in regime 1.° The Euler equation when x,>0 (Z,=2Z.) is given by:

(4) M(ZG’Nt) -Wt-ah(Nt-Nt~1) +Trcﬁah(Nt+1-Nt) +
+ (l-nc)ﬁaf(Ntu_Nt) =0

where M(.,.) is the marginal revenue function.® When R(.) is given by (3),
M(Z,N) = Z-bN, . After rearranging terms, (4) can be rewritten as a second-order
linear difference equation:

(5) {Bmo,+B(1-m)a, }N, +
+ {-b-Olh-BTTGOlh-B(l-TTG)Olf }Nz + ahNt~1 = Wt—ZG

Defining C, = mea, + (1-nJa, ., ¢, = - (B+a,/Co+b/Cy) , us=a,/Cs , and
denoting L as the lag operator, | get:

(6) ﬁ<1+%L+iGL2>N - %

B t+1 C

Note that if @,=a,, then C,=a,=a, and u,= 17, in which case equation (6)
collapses into the familiar form found in Sargent (1978), which is the basis for
deriving the partial adjustment result. In other words, equation (6) nests the
standard symmetric quadratic adjustment cost structure extensively studied in the
dynamic labor demand literature. The only innovation here is to allow for the
possibility of asymmetric adjustment costs.

Note also that when a,=a,=0, then bN, = W, - Z,, which is the standard
static maximization condition for employment determination (real wage equals
marginal revenue in each period).

The reciprocals of the roots of this second order difference equation are:

(7) N = _¢civ¢2c-4ﬁ.uc

c 2B

It can be shown that the term inside the square root is greater than zero for

® | assume that this occurs when the economy is in the good state G. This is
consistent with the relevant Euler equation when x,>0, as shown below.
°® Note that when x,>0, and by substituting in equation 4,
Z >bN +W - BE [C/(x,)] =A

One can show by symmetry that Z,<A when x,<0. Therefore, the
maximization procedure proposed here can be applied since the two relevant Euler
equations are independent from each other (see Jaramillo et al. (1991)).

4



reasonable values of the parameters b, 8, and a,, which implies that the two roots
arereal. | experimented solving equation (7) for some special interesting cases and
for a range of reasonable parameter values. In most situations, | obtained
0<A,, <1<As,, as in Sargent (1978), which permits one to rewrite equation (6)
by operating on both sides of it with the forward inverse of 1-A;, to get:™

@

A 1 .
8) N = XN N - o1 E E wWw -2 )
( ) t+1 G1 t C’G /,L ( X ) £+l ( E+141 E+1+1 )

Note that this condition should hold for each period t+j+ 7 whenever the
economy is hiring at t+/ (x,,,>0), j=0,1,...

Assuming that employers’ expectations about {W;} and {Z} are formed
rationally, the last term in equation (8) can be substituted for contemporaneous
and lagged values of these two variables. For example, if W,,, is well represented
by an autoregressive process of order 1 plus a constant k, with p<1 as the AR
parameter, then E,W,,, = p' W, + ik . Substituting this back into equation (8), |
get for each period t+j+ 7:"

A W z
(9) Nt+j+1 = KG + >\Gth+j - C 1 ( r+j+l — t+j+l )
G:U‘G 1- pw 1- pz
>\G2 >\G2

The equation above shows explicitly how the parameter A, determines the
speed of employment adjustment whenever the economy is in this regime
(whenever x.,,>0). It is similar to the standard partial adjustment labor demand
equation, but the difference here is that it is valid only when the economy is in
regime 1.

One can show by symmetry that the following partial adjustment equation
is valid when the firm is in the other regime, /.e., when the firm is firing at time t
(x,<0):

A 17 Z

(lo) Nt+.+1 - K + )\ th+' _ B1 ( t+j+1 + t+1+3 )
’ N P,
>\B2 >\}32

Comparing the two previous equations, it is observed that the speed of
employment adjustment differs across the two states of the economy, as long as
m, # m, and a, # a. The pair of equations above constitutes a Threshold
Autoregressive (TAR) multivariate model in levels:

" For details on this step, the reader is referred to Gonzaga (1993). See also
Sargent (1987), page 203.

" | assumed here that {Z} also follows an AR(1) process. In general, if both
{Wt} and {Zt} follow an AR(p), several lags of these two variables should be added
to equation (9). K, is a constant.



[¢]

1 1
(1) (1) (1) (1) (1) y
{a +al'N_, +Yy bW o+ Y vz v e, if x>0
(11) NC = i=0 i=0

[¢]

1 1
(2) (2) (2) (2) (2) y
a” +a?N_, +Y bUW_ +Y cPz  +e?, if x <0
i=0

i=0

In this paper, | compare this model with the standard partial adjustment
model in terms of their abilities to fit firm level employment data. The partial
adjustment model (as in Sargent, 1978) specification is:

(12) N =a, + AN +Y o, W +Y B2 +c¢,

i=0 i=0

Note that the partial adjustment model is nested in the TAR representation
in levels given by equation 11, being observed there when the AR coefficients and
the variances of the error terms are the same in both regimes.

The model thus produces a simple piecewise reduced form for employment
(a TAR representation) which is capable of generating an asymmetric cycle that fits
the basic features observed by most labor market series analysts.

in sum, this section showed how an asymmetric empioyment cycle can be
generated from a standard convex dynamic labor demand model once one drops
the unrealistic assumption of symmetric labor turnover costs.

3 Adjustment Costs in the U.S. Airline Industry - 1959-77"

This section presents some informal evidence on the size of hiring and firing
costs faced by firms in the airline industry for each class of workers studied in this
paper.” The discussion framework is one in which firing costs are assumed to
depend mainly on the effectiveness of labor unions’ activity through the
introduction of provisions regardingmonetary compensation for breach of contract,
dismissal payments, and layoff advance notices. Hiring costs, on the other hand,
are assumed to increase with the level of skillness required for each category of
workers. In general, hiring costs include costs of advertising, interviewing,
screening and training new workers; and the cost of intrawork transfers (see Piore,
1986).

It has been suggested by many authors that pilots carry relatively high
employment adjustment costs (see, for instance, Williams (1991)). On the hiring
side, costs are inflated by expensive ground and flight training. On the firing side,

2 Quarterly data was collected by the Civil Aeronautics Board (CAB) only for
the period 1959-1977.

* The U.S. airline industry in the period studied here (1959-1977) was
characterized by strict government regulation, the presence of some strong craft
unions, and by a high concentration rate. See Gonzaga (1993) for a description
of the main features of the U.S. airline industry under the regulated period.
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costs are also large due to the high degree of pilots’ unionization.” One should
also expect an almost complete idiosyncratic labor market for pilots with a low
voluntary turnover rate, since seniority rewards regarding wages and work
conditions are substantial and are not transferrable across carriers (see Cappelli,
1987).

Seniority rewards also exist for flight attendants but are less steep. Hiring
costs are lower, since training costs are not so expensive. On the firing side, flight
attendants did not have their own independent union until 1975 when the
Association of Flight Attendants (AFA) was created. As a consequence, flight
attendants were not able to obtain wage gains comparable to those made by pilots
and mechanics during most of the regulated period. Low firing costs should thus
be expected, since their bargaining power was not very high during most of the
period of analysis.

Mechanics have arguably the highest degree of bargaining power in the
airline industry. Their skill requirements are large, seniority rewards are not so
steep, there is a high demand for them outside the airline industry, and their main
union, the International Association of Machinists (IAM), was highly centralized and
effective throughout the regulated period (see Cappelli, 1987). In fact, both hiring
and firing costs should be expected to be large. Williams (1991} found that tabor
hoarding for mechanics seems to be high.

4 The Data

One of the main weaknesses of the empirical literature on asymmetric
employment cycles has been the sparse use of firm level data, which is clearly
preferable since aggregation tends to obscure movements at the microeconomic
level, usually removing asymmetries. The problem is to find firm level data that is
frequent enough to avoid temporal aggregation bias and that span a period of time
containing a reasonable number of complete business and firm specific cycles.

Some European countries recently started to collect firm level employment
data in response to the increasing demand for a better analysis of the
"Eurosclerosis” phenomenon (see Bertola and Bentolila, 1990). However, most of
this new data is annual. For more frequent data, either the span is too short or
there is no information on real wages, sales, or revenues.’®

The data set used in this paper consists of quarterly observations on
employment, wages and total operating revenues for 19 U.S. airline companies
between 1959 and the first quarter of 1977.® | collected employment (total

* The Air Line Pilot Association (ALPA), created in the 1930s, represented the
union workers with the highest salaries by 1959 (see Cremieux, 1992).

® Gavosto and Sestito (1992), for instance, explored a huge monthly firm level
data set available from the Italian social security agency, INPS. However, the data
misses information on production variables and wages are only available at an
annual frequency.

% | should note that a sub-set of the data used in this chapter was explored by
Card (1986), and by Hamermesh (1992). They both used data for mechanics in
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number of employees) and wages (average payroll per employee, excluding fringe
benefits) variables for three categories of workers: pilots and copilots, flight
attendants, and maintenance mechanics."”” As shown in the previous section,
these categories represent a wide dispersion in terms of adjustment costs, which
implying a dispersion in employment adjustment behavior for each type of worker.

The source of the data are the Form 41 reports that airlines were required
to file with the defunct Civil Aeronautics Board - CAB. The labor variables were
found in the Form 41’s Schedule P-10, which was filed quarterly until 1977:1.

Total operating revenues data was collected from Air Carrier Financial
Statistics (several issues), a CAB serial publication. It consists of the sum of
transport revenues and subsidies. Only data on domestic operations were
considered, since most workers in some categories (like pilots) are not reported in
international operations. | use the quarterly U.S. Implicit Price Deflator to convert
nominal wages and total operating revenues into real values.

Some filters were applied to the employment and wage data before analysis.
| collected information on strikes and other labor-management problems that
resulted in total or partial suspension of operations for some airline in the period
considered. Whenever employment numbers dropped considerably in any of these
periods, they were removed from the data set.” | also include strike dummies in
the linear and nonlinear model regressions.

One problem with the data should not be overlooked. Cremieux (1992)
reported that the wage numbers taken from Schedules P-10 are based on the last
two weeks of the quarter. That could bias the results since | do not consider any
variation in wages along the quarter. Therefore, the wage variables used in this
analysis should be viewed as proxies to the actual salaries received in each period.

5 Skewness and Other Summary Statistics

In this section, | begin the search for nonlinearities in each series in the
airlines data set by computing some conventional measures of asymmetries.

The empirical strategy is based on DelLong and Summers (1986).
Employment growth is defined as in Davis and Haltiwanger (1990)":

seven trunk airlines between 1969 and 1976. Card (1986) compared the
performance of a dynamic efficient contract model to the standard partial
adjustment labor demand model by Sargent (1978), finding that neither model
successfully explained the relationship between wages and employment in the
data. Hamermesh (1992) showed that including fixed adjustment costs in a
dynamic labor demand model produced better results when compared to the nested
partial adjustment model.

" Table 1 gives the names and codes of the 19 air carriers in the data set, and
the types of workers available for each airline.

'® For more details on data sources and procedures, see Gonzaga (1993).

" The reason for using this definition rather than a standard employment
growth rate is that the latter induces asymmetry, while the former should be

8



(;1_3) DNC - (Nt—Nt-l)

1
—_ (N +N
) ( t t-l)

| compute skewness coefficients for this measure of employment growth for
each series (each pair of firm-worker category in the airline data set). In Gonzaga
(1993), | show that removing a linear trend and seasonal effects do not alter
significantly the results reported here.”® Skewness coefficients are defined as in

Kendall and Stuart (1969):
T2

m
1 K = v _2
14) Sk~ oyt

where T is the total number of observations, and m, and s are, respectively, the
third centered moments and the standard deviation of the series under analysis
(employment growth as defined above). A zero skewness coefficient implies a
symmetric series (roughly, it implies that negative employment changes are not
significantly different than positive changes). A positive skewness coefficient - a
distribution skewed to the right - indicates asymmetry, being observed when the
median is below the mean (roughly, it implies that positive changes are larger than
negative changes).

Table 2 contains summary statistics for the measure of employment growth
(DN, defined above for pilots, flight attendants and mechanics in each airline. As
expected from the discussion in Section 3, | find that flight attendants’
employment growth vary more than for other categories in almost every airline (see
the fourth column of Table 2). Note also how employment growth standard
deviation is much higher for all categories in small and seasonal carriers compared
to the large trunk carriers.”

The second column of Table 3 presents skewness coefficients of
employment growth for each series. However, to examine the statistical
significance of these skewness coefficients, one has first to test for serial
correlation in the employment growth variables. Kendall and Stuart (1969) showed
that when there is no serial correlation the skewness coefficients are normally
distributed with standard errors given by ((6T)/(T-7)(T-2))"*. When there is serial
correlation, however, there are no available test statistics in the literature. The
conventional approach in these circumstances is to compute sampling skewness

symmetrically distributed between -2 and 2 for a symmetric series.

2° In Gonzaga (1993), | removed a linear deterministic trend, since the span for
each series is not too long (18 years). In future work, I intend to use alternative
trend-cycle decomposition methods to check the robustness of the results obtained
here. | also note that taking logs does not significantly affect the resulits.

2 Gavosto and Sevisto (1992) also observed this negative size effect on
employment growth variability for Italian firms in the INPS sample.
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standard deviations based on a simple Monte Carlo simulation procedure proposed
by DeLong and Summers (1986). This procedure was recently used by Pfann
(1991) and Choi (1991), and is fully described in Gonzaga (1993).

The third column of Table 3 shows marginal significance values (p-values)
for the second column skewness coefficients. They are based on one-tailed normal
distribution with standard errors as given in Kendall and Stuart (1969), i.e.,
assuming no serial correlation. The fourth column presents p-values of Box-Pierce
Q statistics testing for up to 4" order serial correlation. These Q statistics should
follow a chi-square distribution with 4 degrees of freedom. A p-value of 5% in this
column, for example, means that the null hypothesis of zero serial correlation is
rejected at the 5% significance level. Finally, the fifth column presents p-values
based on the Monte Carlo procedure described above (300 replications and an
AR(4) are used for each series).

Note that the p-values from the Monte Carlo simulation do not differ much
from p-values assuming Kendall and Stuart’s distribution - no serial correlation -
when serial correlation is in fact rejected by the Q-test at a 10% or less margin of
significance, which reassures the validity of the procedure used here.

Therefore, to count how many series are significantly skewed, | use Table
3 third column p-values for each of the series that appears not to be serially
correlated at the 10% significance level (based on fourth column Q statistics p-
values), and the fifth column p-values for the remaining series. | find that 30 out
of 57 series are significantly positively skewed at the 10% level (28 at the 5%
level), while eight series are negatively skewed at the 10% level (7 at the 5%
level). So most series - 38 out of 57 - are found to be asymmetric.

According to the labor demand model derived in section 2, this can be
indicating that adjustment costs are asymmetric, with downward adjustment costs
being in most of the cases larger than upward adjustment costs. Alternatively, it
can be indicating that forcing variables (real wages and real revenues) are
asymmetric, or still that shocks to these variables are asymmetric.

To test whether the observed asymmetries are coming from asymmetries of
forcing variables, | study the residuals from the standard partial adjustment
regression due to Sargent (1978) - equation 12 of section 2 - applied to each of
the series in the sample.

Gonzaga (1993) presents the estimation methods and results. Most of the
coefficients have the expected signs, with coefficients on lagged employment
corresponding to values typically found in the empirical literature (see Hamermesh,
1993). Here, however, | present only the results from the analysis of asymmetries
in the residuals from the linear model.

As in Table 3, Table 4 presents skewness coefficients, p-values assuming
zero serial correlation of the residuals, and Q-statistics’ p-values for serial
correlation of up to 4" order. Most of the series appear to be serially uncorrelated
(zero serial correlation is rejected for only 9 series at the 5% level).

Examination of the p-values from the third column (no serial correlation)
suggests that 20 series are significantly positively skewed at the 5% level, while
12 series present significant negative skewness at the 5% level. Therefore, even
controlling for movements in forcing variables, 32 out of 57 series seem to be

10



asymmetric.?> This is very damaging to the class of linear labor demand models.
It is either indicating that the disturbance term in the partial adjustment equation
(12) is asymmetric (thus, non-Gaussian), or that employment adjustment is
asymmetric (thus, nonlinear). If the latter is true, one should use a nonlinear model
like the one developed in section 2.

Summing up the findings of this section, | showed that most of the
untransformed employment growth series seem to be asymmetric - 38 out of 57
series. Then, | tested whether this apparent asymmetry remained after controlling
for movements in forcing variables typically used in labor demand models. The
analysis of the residuals from a standard partial adjustment model showed that 32
series still appear asymmetric.

To conclude this section, | note that the existent analysis of asymmetries in
employment adjustment in the literature usually performed only the first exercise
above (the study of the employment growth series) and applied it to aggregate
data.”® Replicating this exercise here to firm level data in fact confirmed their
previous findings of asymmetries for most of the series in the sample studied.

However, | moved one step further. | checked the residuals from a standard
linear labor demand model and found that most of them also appear asymmetric.
In order to distinguish whether this asymmetry is coming from a departure from
Gaussianity in the error term or from linearity in the model structure, | perform
more rigorous nonlinearity tests. This is the topic of the next section.

6 Nonlinearity Tests

In this section, | apply several nonlinearity tests to the employment series
studied above. In the analysis below, a process {x,} is defined to be linear in mean
with respect to the information set spanned by Z, if:

(15) PIlE(x, |2,)=26'] =1 , for some §'€R".

as in Lee et al. (1993} - note that Z, may contain lagged values of x,..

The condition above - linearity in mean - is the null hypothesis in all tests
described below.?* Most of the nonlinearity tests consist of examining whether
the residuals of a linear AR model are orthogonal to some transformation of the
dependent variable. In case they are not, the null hypothesis (of linearity in mean)
is rejected. All tests are described in Gonzaga (1993). | used Tsay’'s (1991)
mnemonics for each test: ORI-F is the original Tsay’s (1986) F test, AUG-F is

22 Note that the number of negative skewness increased significantly compared
to the previous table. Now 12 series seem to be skewed to the left - compared to
8 in the previous table. That is probably indicating that some of the positive
skewness in the previous analysis was coming from positive asymmetries in the
forcing variables.

% See, for instance, DeLong and Summers (1986) and Pfann (1991).

24 Note that a time series exhibiting ARCH is linear in mean according to
condition above.
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Luukkonen et al. (1988) augmented F test, TAR-F is Tsay’s (1989) test, CUSUM
is Petruccelli and Davies (1986) test.

Table 5 displays the results of the application of the nonlinearity tests
described in the appendix to the airlines data set. It uses log first-differenced
series.”

All series were log first-differenced to make them stationary. If the series
vvere non-stationary, then one can show that the arranged autoregression tests
vvould be biased in the direction of rejecting linearity. This is because both the
TAR-F and the CUSUM tests are based on the white noise distribution of the
standardized predictive residuals under the null of linearity. When unit roots are
present, however, these residuals are not white noise.

In fact, I could not reject non-stationarity for most of the series in the sample
(Augmented Dickey-Fuller (ADF) tests fail to reject unit roots for all but three
series), while ADF tests rejected unit roots for all log first-differenced series.

Table 5 suggests that most log first-differenced series appear to be linear.
Linearity is rejected at the 10% level for 12, 9, 13, and 16 (out of 57) series when
ORI-F, AUG-F, TAR-F, and CUSUM tests are respectively used. This is in fact
much less nonlinearity (thus much less asymmetry) than what is suggested by the
skewness analysis of the previous section.

However, these results should be taken with caution. A Monte Carlo
simulation presented in Gonzaga (1993) showed that these tests are not very
powerful when the AR parameters and the error variances are not very far apart
from each other across regimes, which could very well be the case for most of the
series in this sample.

The results from the previous section, nonetheless, pointed to more
nonlinear series than found by the nonlinearity tests. As mentioned above, this is
possibly due to coefficients being too close to each other across regimes. The
next section, thus, estimates the TAR model proposed in section 2. It then tests
whether one can reject equality of coefficients across regimes.

7 Fitting the TAR Model

In this section, | fit the threshold autoregressive (TAR) nonlinear model
suggested in section 2 to each series in the airlines sample and compare it to the
traditional partial adjustment labor demand model a /a Sargent (1987). | use a
simple procedure proposed by Tsay (1989) and used in Potter (1 991).

The Tsay (1989) procedure for estimating a TAR model consists of four
steps. First, one should choose the order of the AR, p. of the time series under
analysis. This is usually done by studying the partial autocorrelation function or
by using the Akaike Information Criterion (AIC).*® Second, calculate the statistic
TSAY2 described in the appendix for each arranged AR of order p and delay
parameter deS. Then, select d, such that:

* The results are not significantly sensible to the log specification, nor to
removing linear trends and seasonal effects.

* The first step automatically determines the set of possible threshold lags
S = {1,...,p}. I used below the AIC to determine the AR order D.
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(16) TSAY2(p,d) = MAX {TSAY2(p,d) }

The third step consists in selecting the threshold valuesr, i=1,...,k. This
is done by analyzing scatterplots of various statistics (such as t-ratios and
standardized predictive residuals) against the threshold values as described in Tsay
(1989). Finally, refine the model by computing AIC for the two sets of regressions
to determine the final AR order in each regime.

Since the theoretical model of section 2 includes other variables, | choose
a different strategy for the first two steps. The muiltivariate model from our
analysis of section 2, equation (11), is fitted here. | also set arbitrarily d=7. The
model is thus:

(17) 1\7t - { i;o 1;0
a®N_, +Y b? W + Y c®R.,+€”, ifDN, sr

i=0 i=0

a linear multivariate model for each regime, with the switch given by the
employment rate of change last period.

The choice of the single threshold r is done by applying the rolling window
technique (see Potter (1991) and Tsay (1989)). Scatterplots of the t-ratios of
recursive estimates of the coefficients in the arranged regression above against the
size of the threshold variable are studied. The intuition of this technique is that if
the series is linear (if the series does not show a break across regimes) then the t-
ratios should converge smoothly to its asymptotic value. On the other hand, if in
fact the coefficients change across regimes, then there should be a jump in the t-
ratios as soon as observations from the second regime start coming in.

For each and every series in the sample, | in fact observe this jump for
values of the threshold variable between -0.01 and 0.01 (see Gonzaga, 1993).
Since the value of zero is suggested by the theoretical model, | set the threshold
at this level for all series.

[ then fit equation (17) for each regime defined by the threshold being
greater or less than zero. The results and methods are ommitted here to save
space - see Gonzaga, 1993, for a complete description. The results show that the
estimates of the coefficients on lagged employment seem to differ across regimes
indicating that employment adjusts differently in contractionary periods (when
DN, <r) compared to expansionary periods (DN,>r).

To test how this nonlinear model compares to the linear model (without
regime-switching) estimated in section 4, | compute residual variances for both
models for all series - as suggested by Potter (1991) - and Chow F-tests of equality
of the coefficients across the two regimes in the nonlinear model. The results are
in Table 6. The first column after the series names show the combined error
variance for the regressions in the TAR model. The second column presents the
error variance for the linear model. The third column measures the percent change
of residual variances when comparing the nonlinear model and the linear model.

The result is that the nonlinear model residual variance is significantly lower
than in the linear model (in one case, 34% lower) for almost half of the series in
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the airlines sample. Residual variances drop more than 10% (5%) in the nonlinear
rmodel for 19 (27) series in the sample.

The Chow F-test confirms these findings. It rejects equality of the
coefficients across regimes - defined by the sign of lagged employment changes -
in 23 series at the 10% significance level (16 series at the 5% level).

Caution should be exercised here, since | am not correcting for the possible
non-stationarity of the series in levels. In future research, | intend to run the
regressions in first-differences and allow for possible cointegration between the
variables in the model.

Summing up, | showed that the TAR model fits the data better than the
traditional partial adjustment model for about half of the series in the airline data
set. This reinforces the findings of section 5 that about half of the series appear
asymmetric. Since the traditional partial adjustment linear model is incapable of
generating an asymmetric employment cycle, contrary to the TAR nonlinear model
proposed here, this result does not come as a surprise.

I thus argue that the TAR nonlinear labor demand model should replace the
standard linear modelin empirical work that attempts to explain employment cycles
at the firm level whenever asymmetric labor adjustment costs are present.

8 Summary
In this paper, | studied the phenomenon of asymmetric employment cycles

at both the theoretical and empirical levels.

On the theoretical side, | proposed modifying the standard dynamic labor
demand models by introducing the assumption of asymmetric employment
adjustment costs, while keeping the assumption of a quadratic structure. The
major finding was that the assumption of asymmetric turnover costs produced
asymmetric employment cycles. The reduced form for employment obtained in the
quadratic asymmetric adjustment cost version of the model is a threshold
autoregressive (TAR) multivariate model, which nests the standard linear
employment equation as a special case. The TAR model is nonlinear and capable
of generating asymmetric cycles.

On the empirical side, | studied the behavior of 57 microeconomic
employment series from the U.S. airline industry. Section 5 showed that firm
employment cycles for the three categories of workers studied - pilots, flight
attendants, and mechanics - looked asymmetric in most firms. The analysis of the
residuals of a linear labor demand regression revealed that 32 out of 57 series still
appear asymmetric after controlling for movements in forcing variables. However,
more general nonlinearity tests failed to reject linearities in more than 80% of the
series, aresult that could be associated with the low power of most of these tests.

In section 7, | then fitted the multivariate nonlinear TAR model developed in
section 2 to each series and compared its performance to the standard multivariate
partial adjustment labor demand model without a switching-regimes condition. The
results indicated that the TAR model explained the data better than the traditional
partial adjustment model for about half of the series studied - the residual variance
dropped by more than 5% in 27 out of 57 series.

I then concluded that the TAR model proposed in this paper should replace
the standard linear model for fitting employment cycles at the firm level whenever
adjustment costs are suspected to be asymmetric.

14



TABLE 1

FORM 41 - SCHEDULE P10 J
ACCOUNTS
AIRLINES CobE 21 23 5524 25 6226.3 6426.3 28.1

American Airlines AA X X X X X - X
Aloha Airlines AQ X X X X - X -
Alaska Airlines AS X X X X - X -
Braniff BN X X X X X - X “
Continental 6(0] X X X X X - X “
Delta DL X X X X X - X
Eastern Airlines EA X X X X X - X "
Frontier FL X X X X - X -
Hawaiian Airlines HA X X X X X - -
National NA X X X X X - X
North Central NC X X X X X -
Northwest NW X X X X - -
Ozark 0z X X X X - X -
Piedmont PI X X X X - - -
Southern SO X X X X - X -
Texas International TT X X X X - -
TWA TW X X X X X -
United Airlines UA X X X X X -
US AIR (Allegheny) Uus X X X X X - -
Western WA X X X X X - X

Notes: Accounts - 21 - General Management
23 - Pilots and Co-Pilots
5524 - Flight Attendants
25 - Mechanics
6626.3 and 6426.3 - Passenger Handling
28.1 Trainees and Instructors
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TABLE 2

SUMMARY STATISTICS EMPLOYMENT GROWTH - US AIRLINE INDUSTRY
ORIGINAL SERIES

Usable Standard Maximum Minimum
Series Observ. Mean Deviation Skewness Value Value
AAE P 72 0.008367 0.05257 -0.4467 0.1745 -0.1881
AAE FA 72 0.02023 0.04251 0.2699 0.1664 -0.1120
AAE M 72 0.004587 0.02947 -1.141 0.06276 -0.1061
ASE P 65 0.02233 0.1935 0.7458 0.6263 -0.3961
ASE FA 65 0.03308 0.2699 0.4533 0.7160 -0.6667
ASE M 65 -0.001557 0.1506 -2.649 0.2268 -0.7961
BNE P 72 0.01011 0.04051 0.7258 0.1543 -0.1117
BNE FA 72 0.02363 0.05165 0.6397 0.1863 -0.08604
BNE M 72 -0.001168 0.06122 -1.674 0.1423 -0.2889
COE P 70 0.02010 0.04600 0.4689 0.1382 -0.06734
COE FA 66 0.03536 0.07020 0.7246 0.2609 -0.1565
COE M 65 0.007557 0.03290 0.1518 0.08796 -0.06565
DLE P 72 0.02001 0.03609 2.248 0.2112 -0.05278
DLE FA 72 0.03057 0.05084 -0.02402 0.1863 -0.1505
DLE M 72 0.01498 0.03503 0.8923 0.1551 -0.1230
EAE P 70 0.01180 0.05849 4.295 0.4075 -0.1366
EAE FA 70 0.01742 0.04794 0.08699 0.1541 -0.1211
EAE M 70 0.009433 0.03388 0.8228 0.1567 -0.08492
FLE P 70 0.01727 0.07577 2.821 0.4407 -0.1176
FLE FA 42 0.02992 0.1093 0.3327 0.2564 -0.1605
FLE M 68 0.01790 0.09061 2.183 0.5106 -0.3078
HAE P 70 0.009541 0.1570 -0.07729 0.3881 -0.4460
HAE FA 70 0.01677 0.1549 -0.4618 0.4103 -0.5660
HAE M 70 0.0009563 0.09363 0.2566 0.3881 -0.3012
NAE P 63 0.01096 0.06702 -0.7107 0.1629 -0.2248
NAE FA 63 0.02487 0.06542 -0.08960 0.2163 -0.1744
NAE M 63 -0.005442 0.07698 -2.818 0.1742 -0.4366
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TABLE 2
(Cont inued)

Usable Standard Maximum Minimum
Series Observ. Mean Deviation Skewness Value Value
NCE P 72 0.008886 0.04426 0.2407 0.1389 -0.1314
NCE FA 68 0.01460 0.05494 1.154 0.2222 -0.1289
NCE M 72 0.006587 0.03724 0.2190 0.1713 -0.1644
NWE P 61 0.02088 0.05593 -2.064 0.1306 -0.2623
NWE FA 61 0.02998 0.05525 -1.553 0.1894 -0.2449
NWE M 61 0.008562 0.03775 -0.4174 0.1607 -0.1684
OZE P 70 0.01063 0.04771 -0.1024 0.1299 -0.1602
OZE FA 70 0.01788 0.05960 0.04366 0.1368 -0.1124
OZE M 70 0.01799 0.04883 0.3634 0.1425 -0.09548
PIE P 68 0.01374 0.03955 1.218 0.1721 -0.08511
PIE FA 68 0.02404 0.07523 1.336 0.3407 -0.1206
PIE M 68 0.01372 0.05388 1.337 0.2387 -0.1330
SOE P 72 0.01905 0.06555 0.5240 0.2109 -0.1949
SOE FA 72 0.02732 0.09080 0.6036 0.3333 -0.1987
SOE M 72 0.009249 0.08755 0.9873 0.4079 -0.2642
TIE P 70 0.01388 0.07055 4.139 0.4673 -0.07813
TIE FA 70 0.02249 0.07556 2.771 0.4444 -0.09091
TIE M 68 0.005257 0.1090 -0.004600 0.4955 -0.3846
TWE P 72 0.007260 0.03015 -0.2924 0.07914 -0.07224
TWE FA 70 0.01905 0.07279 -0.1003 0.1672 -0.1263
TWE M 72 0.008628 0.03428 -0.06635 0.09079 -0.07575
UAE P 72 0.01200 0.04951 6.769 0.3971 -0.04543
UAE FA 72 0.02592 0.08091 4.499 0.5812 -0.1206
UAE M 72 0.01067 0.08001 4.143 0.5256 -0.1740
USE P 70 0.02681 0.08722 3.166 0.4599 -0.1075
USE FA 70 0.03462 0.09056 1.651 0.4393 -0.1509
USE M 70 0.02882 0.08938 1.628 0.3985 -0.1709
WAE P 68 0.02795 0.08841 2.552 0.5256 -0.1659
WAE FA 68 0.02903 0.05643 0.2171 0.1927 -0.1413
WAE M 68 0.01973 0.04590 0.6635 0.1484 -0.1080
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TABLE 3

EMPLOYMENT GROWTH - US AIRLINE INDUSTRY
ORIGINAL SERIES

P-Value P-Value P-Value
Skewness Skewness Q-Statistic Skewness
Series Coefficient No Ser.Corr. for Ser.Corr. Monte Carlo
AAE P -.4467225 0.06485 .096402 * 0.06785 *
AAE FA .2698900 0.17998 .428803 0.17446
AAE M -1.140951 0.00000 .023116 ** 0.00000 =**
ASE P .7457691 0.00824 ** .522741 0.00752
ASE FA .4532543 0.07250 .000895 *=* 0.03955 =*x*
ASE M -2.648621 0.00000 ** .850140 0.00000
BNE P .7258472 0.00690 .000136 ** 0.00621 **
BNE FA .6397441 0.01500 ** .263765 0.01283
BNE M -1.674065 0.00000 ** .546452 0.00000
COE P .4688862 0.05853 .001203 *~* 0.06334 *
COE FA .7245938 0.00942 .004161 ** 0.01332 =*x*
COE M .1517944 0.31275 .009240 ** 0.31841
DLE P 2.247685 0.00000 ** .823907 0.00000
DLE FA -.0240238 0.46753 .756150 0.46585
DLE M .8923182 0.00123 =** .649628 0.00075
EAE P 4.294520 0.00000 =** .991652 0.00000
EAE FA .0869943 0.38561 .954177 0.38768
EAE M .8228019 0.00297 ** .829883 0.00606
FLE P 2.821267 0.00000 =** .161263 0.00000
FLE FA .3326673 0.19804 .492576 0.17062
FLE M 2.183101 0.00000 ** .147188 0.00000
HAE P -.0772949 0.39807 .032811 *~* 0.39251
HAE FA -.4618091 0.06135 .000007 *~* 0.05244 *
HAE M .2565733 0.19557 .408881 0.19367
NAE P -.7106802 0.01229 ** .645190 0.03207
NAE FA -.0895979 0.38843 .970377 0.40281
NAE M -2.818289 0.00000 =** .626874 0.00000
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TABLE 3

(Continued)

P-Value P-value P-Value
Skewness Skewness Q-Statistic Skewness

Series Coefficient No Ser.Corr. for Ser.Corr. Monte Carlo
NCE P .2406685 0.20716 .000000 =*~* 0.15905
NCE FA 1.154093 0.00000 *~* .489536 0.00000
NCE M .2189858 0.22881 .413894 0.22379
NWE P -2.063821 0.00000 ** .523312 0.00000
NWE FA -1.552648 0.00000 =*x* .380657 0.00000
NWE M -.4173786 0.09713 .045891 *~* 0.13569
OZE P -.1024348 0.36603 .453323 0.37631
OZE FA .0436558 0.44199 .663696 0.44350
OZE M .3634086 0.11225 .516300 0.12163
PIE P 1.217596 0.00003 *~* .708136 0.00002
PIE FA 1.335712 0.00000 *~* .592849 0.00003

PIE M 1.337422 0.00000 .018850 *»* 0.00005 **
SOE P .5240428 0.03774 *x* .134118 0.02638

SOE FA .6036170 0.02031 .064473 * 0.02367 **
SOE M .9873205 0.00040 *~* .487653 0.00075
TIE P 4.138791 0.00000 *~* .351384 0.00000
TIE FA 2.770926 0.00000 ** .410650 0.00000
TIE M -.0046000 0.49396 .841318 0.49406
TWE P -.2923826 0.16067 .000038 *~* 0.17792
TWE FA -.1002997 0.36872 .000000 *»* 0.36273
TWE M -.0663469 0.41097 .305483 0.40985
UAE P 6.769470 0.00000 *~* .957936 0.00000
UAE FA 4.498574 0.00000 *~* .164791 0.00000
UAE M 4.143164 0.00000 *~* .275850 0.00000
USE P 3.165788 0.00000 ** .985985 0.00000
USE FA 1.650890 0.00000 ** .703804 0.00000
USE M 1.628040 0.00000 ** .932381 0.00000
WAE P 2.552302 0.00000 ** .772346 0.00000
WAE FA .2170929 0.23740 .338167 0.24644
WAE M .6634750 0.01447 *x* .15%9477 0.01696

Notes: Skewness p-values are based on one-tailed normal distribution.
(**) Significant at the 5% level; (*) Significant at 10%, but not at 5%.
"0.00000" indicates that the corresponding p-value is less than 0.00001.
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TABLE 4

US AIRLINE INDUSTRY
RESIDUALS FROM LINEAR MODEL
P-Value P-value
Skewness Skewness Q-Statistic

Series Coefficient No Ser.Corr. for Ser.Corr.
ARE P -.7871186 .8517395E-02 ** .2946920
AAE FA -.9966980 .8643142E-03 ** .2944631
AAE M -1.288539 .1656531E-04 *x* .2463430E-01 *¥*
ASE P 1.987716 .1645903E-09 ** .7650885E-01 *
ASE FA .0797705 .7975725 .1540600E-01 **
ASE M -1.095386 .4282276E-03 *x* .5817973
BNE P .3811440 .1960864 .5580289E-01 *
BNE FA .3224103 .2741452 .1816657
BNE M -.9282492 .1641221E-02 *¥* .8112933
COE P -.1320593 .6865291 .8085805
COE FA 1.180779 .3080526E-03 *x* .2406435
COE M -.1436032 .6607719 .7227184E-01 *
DLE P 2.977043 .5656646E-23 *x* .1490874
DLE FA -1.324231 .7069365E-05 *x* .2270868
DLE M 1.351400 .4567296E-05 *x¥* .8592046
EAE P 3.867567 .3176209E-37 ** .8033189
EAE FA -.8701911 .3631677E-02 *xx* .7594226
EAE M -.2451426 .4125828 .1768925
FLE P .9090587 .2388528E-01 *x¥* .4858976
FLE FA .1868710 .6423856 .3657623E-01 *x¥*
FLE M .3254490 .4186727 .1288015
HAE P .3613251 .2271698 .3604050
HAE FA .3652936 .2221065 .9286477
HAE M 1.320090 .1023124E-04 *x* .1689749
NAE P .3727037 .2384362 .9335170
NAE FA .1438853 .6490189 .6632571
NAE M -2.336780 .1451784E-12 ** .4472988
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TABLE 4

(Continued)
P-Value P-Value
Skewness Skewness QO-Statistic

Series Coefficient No Ser.Corr. for Ser.Corr.
NCE P .4649797 .1380805 .4653103E-01 **
NCE FA .0293988 .9252977 .9385459

NCE M 1.192662 .1424929E-03 ** .1891610

NWE -.9897780 .2082449E-02 ** .9016626

NWE FA -.8759051 .6448298E-02 ** .8628962

NWE M -1.174542 .2593652E-03 ** .4538100E-02 **
OZE P .3692348 .2171587 .6762724

OZE FA .4765564 .1111989 .9354557

OZE M .3864566 .1964679 .1109111

PIE .8919262 .3320967E-02 ** .7003976

PIE FA .0456909 .8804322 .9353803

PIE M -.1359557 .6544518 .4201633E-01 **
SOE 1.222266 .5724674E-04 ** .5103232

SOE FA .9619288 .1541202E-02 ** .8772975

SOE M .3211756 .2903485 .8367572

TIE 1.303074 .1787453E-04 ** .1133222

TIE FA .9616683 .1545753E-02 ** .7729097

TIE M -.7085812 .1966107E-01 ** .9082762

TWE .7157197 .1674775E-01 ** .2393750E-02 **
TWE FA .2147959 .4728023 .2101422E-01 **
TWE M .1557463 .6026723 .5372026

UAE 3.677436 .1044066E-34 ** .5366955

UAE FA .0004143 .9988785 .3809738

UAE M 2.564284 .3387958E-17 ** .8189134E-01 *
USE 1.520771 .5539903E-06 ** .8863462

USE FA .6947265 .2218753E-01 ** .8425481

USE M .6900369 .2310444E-01 ** .6764354

WAE P 1.068688 .4343558E-03 ** .8399238E-01 *
WAE FA .2964144 .3291437 .2432755

WAE M .3853739 .2045453 .6057923E-02 =**

Note: Skewness p-values are based on one-tailed normal distribution.
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TABLE 5

EMPLOYMENT GROWTH - US AIRLINE INDUSTRY
DETRENDED SEASONALY ADJUSTED SERIES (FIRST-DIFFERENCES)

P-VALUES
Series ORI-F AUG-F TAR-F CUSUM
AMAE P 0.6139 0.8309 0.1705 0.7805
AAE FA 0.4197 0.6540 0.4638 0.0730
AAE M 0.1018 0.1960 0.1257 0.0114
ASE 0.2238 0.3899 0.6955 0.8769
ASE FA 0.6095 0.7575 0.5253 0.7663
ASE M 0.1719 0.5633 0.0237 0.1671
BNE P 0.0033 0.0445 0.3289 0.0294
BNE FA 0.6261 0.6880 0.6720 0.5081
BNE M 0.3769 0.1042 0.0733 0.3288
COE P 0.6966 0.8845 0.8309 0.3170
COE FA 0.6835 0.9048 0.7452 0.4617
COE M 0.1211 0.2287 0.1457 0.0323
DLE P 0.1069 0.3681 0.2858 0.6583
DLE FA 0.2634 0.4989 0.8021 0.7859
DLE M 0.0067 0.0051 0.0002 0.0000
EAE P 0.6444 0.9513 0.8665 0.3481
EAE FA 0.9372 0.3643 0.2007 0.1220
EAE M 0.3407 0.4498 0.4964 0.5288
FLE 0.3476 0.3368 0.8433 0.3242
FLE FA 0.7561 0.6339 0.6839 0.2917
FLE M 0.8770 0.6060 0.6768 0.1608
HAE 0.0357 0.1056 0.2193 0.1475
HAE FA 0.0445 0.1190 0.0200 0.0238
HAE M 0.0319 0.0909 0.9908 0.8814
NAE P 0.4526 0.7338 0.9335 0.9987
NAE FA 0.1357 0.0544 0.1948 0.3754
NAE M 0.4876 0.8163 0.9893 0.6685
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TABLE 5

(Continued)
Series ORI-F AUG-F TAR-F CUSUM
NCE P 0.1079 0.1095 0.0819 0.7474
NCE FA 0.2145 0.4827 0.4551 0.8683
NCE M 0.7772 0.8961 0.7084 0.8591
NWE P 0.4106 0.5049 0.6927 0.6448
NWE FA 0.0087 0.0633 0.0000 0.6367
NWE M 0.0000 0.0013 0.0000 0.0829
OZE P 0.6374 0.8888 0.6161 0.8061
OZE FA 0.1883 0.4122 0.3479 0.2368
0OZE M 0.8488 0.9096 0.4920 0.0196
PIE P 0.7778 0.6502 0.6329 0.5967
PIE FA 0.6766 0.5235 0.0066 0.1570
PIE M 0.7563 0.8880 0.1322 0.5966
SOE P 0.2306 0.3700 0.2653 0.0548
SOE FA 0.4779 0.6877 0.5450 0.6058
SOE M 0.1334 0.0281 0.1222 0.0112
TIE P 0.1752 0.1907 0.0000 0.0004
TIE FA 0.0983 0.1578 0.0026 0.0158
TIE M 0.0010 0.0027 0.8904 0.0031
TWE P 0.8003 0.8013 0.4848 0.8212
TWE FA 0.7906 0.9155 0.3558 0.0280
TWE M 0.5283 0.8089 0.5536 0.7894
UAE P 0.6138 0.8953 0.0963 0.7628
UAE FA 0.2626 0.5448 0.8357 0.6296
UAE M 0.0952 0.1682 0.5179 0.0307
USE 0.9090 0.8822 0.7919 0.7539
USE FA 0.4051 0.7699 0.9254 0.5264
USE M 0.7541 0.7084 0.9066 0.4660
WAE P 0.1010 0.2333 0.3977 0.7004
WAE FA 0.0364 0.0844 0.0173 0.0153
WAE M 0.0917 0.2093 0.3013 0.1956

Note :"0.00000" indicates that the corresponding p-value < 0.00001.
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TABLE 6

COMPARING THE NONLINEAR AND LINEAR MODELS
RESIDUAL VARIANCES

Residual Variances CHOW
Seriegs Nonlinear Linear (NL/L) p-value
AAE P 9631.1 10710.9 -10.08 .073 *
AAE F 13619.5 14560.1 -6.46 .152
AAE M 25818.2 28425.0 -9.17 .088 *
ASE P 141.1 141 .4 -.20 .432
ASE F 223.1 247.5 -9.87 .097 *
ASE M 221.0 274.9 -19.64 .013 **
BNE P 679.3 719.0 -5.52 .174
BNE F 1047.2 966.7 8.33 .952
BNE M 4167.9 3947.2 5.59 .819
COE P 641.4 588.8 8.94 .947
COE F 1470.9 1312.3 12.08 . 987
COE M 1066.0 1068.7 -.26 .430
DLE P 4802.0 4690.8 2.37 .600
DLE F 12041.1 13854.9 -13.09 .033 **
DLE M 6337.5 6213.4 2.00 .574
EAE P 13055.4 17786.3 -26.60 .001 **
EAE F 13174.4 13969.8 -5.69 .178
EAE M 25738.0 24864.9 3.51 .668
FLE P 472 .4 576.3 -18.02 .012 **
FLE F 139.1 138.1 .71 .475
FLE M 966.1 1460.8 -33.87 .000 **
HAE P 52.1 52.8 -1.34 .365
HAE F 80.8 79.8 1.27 .520
HAE M 222.0 235.0 -5.51 .184
NAE P 518.6 513.8 .94 .492
NAE F 1439.5 1374 .3 4.75 .696
NAE M 2201.1 2669.3 -17.54 .027 *+*
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TABLE 6

(Continued)
Residual Variances CHOW
Series Nonlinear Linear (NL/L) p-value
NCE P 199.4 180.5 10.50 . 996
NCE F 75.5 73.4 2.79 .602
NCE M 196.0 201.2 -2.62 .294
NWE P 1555.6 1888.4 -17.63 .029 **
NWE F 1873.0 2301.9 -18.63 .023 **
NWE M 1094.1 1400.6 -21.89 .012 *x*
OZE P 113.0 116.9 -3.31 .269
OZE F 67.2 92.5 -27.38 .001 *»*
OZE M 239.8 250.2 -4.14 .234
PIE P 72.0 75.7 -4.76 .220
PIE F 57.5 71.6 -19.68 .010 **
PIE M 298.0 296.9 .36 .463
SOE P 115.7 135.8 -14.83 .024 *x*
SOE F 83.2 100.3 -17.07 .016 **
SOE M 182.7 174.9 4.48 737
TIE P 122.2 150.4 -18.72 .010 **
TIE F 72.1 80.3 -10.18 .074 *
TIE M 521.4 587.9 -11.32 .063 *
TWE P 3019.9 3291.1 -8.24 .101
TWE F 45694 .1 45916.8 -.48 .413
TWE M 26650.8 26606.8 .17 .451
UAE P 9122.6 10086.2 -9.55 .076 *
UAE F 50537.7 50365.2 .34 .463
UAE M 281285.7 278042.9 1.17 .517
USE P 1289.4 1645.8 -21.66 .005 **
USE F 616.1 631.2 -2.39 .316
USE M 1522.0 1669.9 -8.86 .103
WAE P 1520.4 1482.1 2.59 .598
WAE F 2169.7 2423.6 -10.48 .078 *
] WAE M 1871.2 1807.2 3.54 .658

Note: (**) Rejects that coefficients are equal across regimes
at the 5% level; (*) Rejects it at 10%, but not at 5%.
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