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Abstract

The Heckscher-Ohlin model with arbitrary number of goods, factors and
countries (consumers) and no restrictions on factor trading is shown to be
equivalent to an exchange model whose goods are the productive factors while
consumer’s indirect demands for factors are derived from their actual demands
for consumption goods. This equivalence enables one to import properties like
the pathconnectedness of the equilibrium manifold, the uniqueness of equilib-
rium for sufficiently small volumes of trade and discontinuities of equilibrium
selection maps for large volumes of trade into the Heckscher-Ohlin model.
This equivalence also provides the proper theoretical background to the im-
portant but so far purely empirical role played in international trade by the
volume of net trades in factor contents.

Keywords: Heckscher-Ohlin; general equilibrium; international trade; factor con-
tent.

JEL classification numbers: D51; F11; F14

1. Introduction

The main goal of this paper is a study of the general version of the Heckscher-Ohlin
model with arbitrary (finite) numbers of countries, goods and factors. In the version
studied in this paper, factors are freely traded between countries. That model is
often interpreted as representing an integrated world economy. The equilibria of
the Heckscher-Ohlin model without factor trading that satisfy Deardorff’s “lens
condition” for Factor Price Equalization ([9] and [13], p. 108) coincide with the
equilibria of the unrestricted Heckscher-Ohlin model. Quite a few properties are
known for the 2 × 2 × 2 model but few of them hold true for the general version
of the model. The only properties that can be considered as firmly established
as those satisfied by versions of the general equilibrium model that are sufficiently
general to include the unrestricted Heckscher-Ohlin model. This applies to the
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existence and efficiency of equilibria as follows from the work of Arrow, Debreu
and McKenzie for example [1, 10, 20]. This is also true of the genericity of regular
economies and of the properties of regular economies, the latter properties having
been proved for the general equilibrium model with production subject to constant
returns to scale by Kehoe, Mas-Colell and Smale [17, 19, 22].

I will show in this paper that the unrestricted Heckscher-Ohlin model satis-
fies other properties than just existence, efficiency and regularity. Since some of
those properties have not yet been proved for general equilibrium models with suf-
ficiently high levels of generality, the strategy adopted in this paper is to prove
that the unrestricted Heckscher-Ohlin model is equivalent to an exchange model,
the simplest version of a general equilibrium model. More specifically, the goods
of that equivalent exchange model are going to be the productive factors of the
Heckscher-Ohlin model. This equivalence between the two models will imply that
every property of the factor exchange model will have an equivalent formulation for
the unrestricted Heckscher-Ohlin model. This equivalence of the two models will
actually take two forms. One is quite elementary. The other one is stronger and
involves the comparison of the natural projection mappings of those two models.

The factor exchange model considered in this paper that will be shown to be
equivalent to the Heckscher-Ohlin model is not to be confused with the neoclassical
representation of international trade described for example by Chipman [8] and that
consists in an exchange model where countries (consumers) make no differences
between consumption goods and factors. These two exchange models are different.
They involve different goods and, in theory at least, even the number of their goods
are different.

In this paper, I emphasize theoretical properties of the Heckscher-Ohlin that
are rarely if at all stated in the literature on international trade. These properties
deal with the structure of the equilibrium manifold, which includes its pathcon-
nectedness, the uniqueness and the number of equilibria, the continuity or lack of
continuity of equilibrium selections. The uniqueness problem (of equilibrium in the
Heckscher-Ohlin model) is also given a complete solution for the two-country case.

This paper is organized as follows. Section 2 is devoted to a brief presentation
of the unrestricted Heckscher-Ohlin model. The factor exchange model whose
“goods” are the (productive) factors is described in Section 3. Section 4 is devoted
to the equivalence between the factor exchange model and the Heckscher-Ohlin
model with goods and factors. Section 5 deals with the properties of consumers’
demands for factors in the associated factor exchange model. Section 6 is devoted
to establishing a number of theoretical properties of the Heckscher-Ohlin model:
structure of the equilibrium manifold and its pathconnectedness; uniqueness and
multiplicity of equilibrium; the continuity or lack of continuity of equilibrium se-
lections. Section 7 is devoted to the case of transitive preferences represented by
utility functions and followed by a brief application to the 2×2×2 Heckscher-Ohlin
model. Concluding comments end the paper with Section 8. Properties that are
generally well-known for the two-good and two-factor cases are recalled with the
level of generality and rigor appropriate for this paper in Appendix 1. A very useful
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condition for a map to be a smooth embedding is stated and proved in Appendix
2.

Basic knowledge of smooth manifolds and mappings contained in the first pages
of Milnor’s marvelous little book [21] is all that is needed for reading this paper.
Some valuable geometric insight can also be gained with the help of Guillemin and
Pollack’s excellent book [15].

2. The Heckscher-Ohlin model

2.1. Goods, factors and prices

There are k ≥ 2 consumption goods and ` ≥ 1 pure primary factors. Goods and
factors are freely traded. Prices are all strictly positive and represented by the
vector (q, p) for goods and factors respectively. It is often convenient to normalize
price vectors, in which case the `-th factor is taken as numeraire, i.e., p` = 1.
Define S = R`−1

++ × {1} and X = Rk++ the strictly positive orthant of the goods
space Rk . The set X × R`++ consists of non-normalized price vectors (q, p). The
set of numeraire normalized prices is then the Cartesian product X×S. Unless the
contrary is explicitly stated, prices are normalized by the numeraire convention.

2.2. Consumption

There are m ≥ 2 of consumers. The consumption set of every consumer is the
strictly positive orthant X = Rk++. Consumer i with 1 ≤ i ≤ m is equipped
with a demand function hi : X × R++ → X. The following properties are usually
considered for demand functions for goods: smoothness (S); Walras law (W);
homogeneity of degree zero (H); a boundary assumption (A); the weak axiom of
revealed preferences (WARP); the negative definiteness of the truncated Slutsky
matrix (ND). (For details, see Appendix, Definition A.1.)

Consumer i is endowed with factors that are represented by the vector ωi ∈
R`++. The m-tuple ω = (ωi) represents the endowments of the m consumers in
the economy. The set of possible endowments, also known as the endowment or
parameter space, is denoted by Ω = (R`++)m.

Remark 1. The demand functions considered in this paper include as a special case
those that result from the budget constrained maximization of utility functions
ui : X → R that satisfy standard assumptions. The approach through demand
functions instead of utility functions is more general. In particular, it does not
require the transitivity of preference relations.

2.3. Production

There is no joint production of consumption goods. The quantity x j of good j pro-
duced with the inputs η = (η1, . . . , η`) is a smooth function x j = F j(η1, . . . , η`) ≥
0 that is monotone, homogeneous of degree one and concave.
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The factor bundle bj(p) ∈ R`++ is the unique bundle that minimizes the cost
pTη of producing (at least) one unit of good j given the (non-normalized) factor
price vector p ∈ R`++. This function can be viewed as the demand function of
the productive sector for the factors required for the production of good j . That
demand for factors bj : R`++ → R`++ is smooth and, for non-normalized factor
prices, homogeneous of degree zero. The associated cost function σj(p) = pTbj(p)

is smooth, homogeneous of degree one and concave. (See Appendix, Proposition
A.5.) The production matrix for the non-normalized factor price vector p ∈ R`++

is the `× k matrix B(p) =
î
b1(p) b2(p) . . . bk(p)

ó
.

2.4. Factor content of goods bundles

The factor content y ∈ R`++ of the goods bundle x ∈ Rk++ is defined as the
quantities of all factors that minimize the total cost of producing the consumption
goods that make up the bundle x . This factor content depends on the (non-
normalized) factor price vector p ∈ R`++ and, using matrix notation, is equal to
y = B(p) x .

2.5. Equilibrium

The 3-tuple (q, p, ω) ∈ X × S × Ω (where the price vector (q, p) is numeraire
normalized) is an equilibrium of the Heckscher-Ohlin model if there exists a bundle
of goods x ∈ X such that the following equalities are satisfied:∑

1≤i≤m
hi(q, p

Tωi) = x, (1)

B(p) x =
∑

1≤i≤m
ωi . (2)

Equality (1) states that the economy produces enough goods to satisfy total de-
mand. They are represented by the goods bundle x ∈ X = Rk++ that is produced
in the economy to satisfy total demand. Equality (2) means that there are enough
resources in factors for the production of the goods bundle x .

At the equilibrium (q, p, ω), the final consumption of goods by the m consumers
is represented by m-tuple

Ä
hi(q, p

Tωi)
ä
∈ Xm. This allocation of goods is also

known as the equilibrium allocation associated with the equilibrium (q, p, ω).
The equilibrium manifold for the Heckscher-Ohlin model is the subset Ẽ of

X × S × Ω consisting of equilibria (q, p, ω). The natural projection π̃ : E → Ω is
the restriction to the equilibrium manifold Ẽ of the projection map (q, p, ω)→ ω.

A direct study of the Heckscher-Ohlin model following the approach of [7]
through the equilibrium manifold and the natural projection is theoretically possible.
It would face, however, a very serious hurdle due to the lack of a natural candidate
for the concept of no-trade equilibrium because consumers’ factor endowments
cannot be consumed. The approach followed in the current paper bypasses this
problem by proving the equivalence of the Heckscher-Ohlin model with an exchange
model.
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3. The associated factor exchange model

Goods for the factor exchange model are the factors of the Heckscher-Ohlin model.
There are therefore ` “goods” for that model and the `-th good or, more simply,
factor is taken as the numeraire.

There are m consumers in the factor exchange model where consumer i ’s de-
mand function fi : S × R++ → R`++ is defined by

fi(p, wi) = B(p) hi(B(p)Tp, wi) (3)

where B(p) is the production matrix defined in A.2
An economy for the factor exchange model is defined by a specific value of the

endowment vector ω = (ωi) ∈ Ω.
The pair (p, ω) ∈ S × Ω is an equilibrium of the factor exchange model if the

(equilibrium) equation ∑
1≤i≤m

fi(p, p
Tωi) =

∑
1≤i≤m

ωi (4)

is satisfied.
The “equilibrium manifold” E for the factor exchange model is the subset of

S × Ω that consists of the equilibria (p, ω). The natural projection for the factor
exchange model π : E → Ω is the restriction to the “equilibrium manifold” E of
the projection map (p, ω)→ ω.

4. Equivalence of the Heckscher-Ohlin and factor ex-
change models

Equivalence means that, roughly speaking, the two models have the same prop-
erties. This equivalence takes two forms. An elementary or weak version uses
algebra to show that the equilibrium equation of one model can be reduced to
the equilibrium equation of the other model and conversely. A stronger form of
equivalence is expressed by way of a commutative diagram of maps that involves
the natural projections of the Heckscher-Ohlin model and its associated factor ex-
change model. That stronger form is necessary if one wants to import properties
of the equilibrium manifold and natural projection from the factor exchange model
into the Heckscher-Ohlin model.

4.1. Weak equivalence

The two models are weakly equivalent if their equilibrium equations are equivalent.
This is expressed by the following Proposition:

Proposition 1. The triple (q, p, ω) ∈ Rk++ × S × Ω is an equilibrium of the
Heckscher-Ohlin model if and only if q = B(p)Tp and the pair (p, ω) ∈ S × Ω

is an equilibrium of the associated factor exchange model.
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Necessity. Let (q, p, ω) ∈ X × S × Ω be an equilibrium of the Heckscher-Ohlin
model. The production of commodity j is a zero-profit operation because of the
constant returns to scale. This implies the equality qj = bj(p)T p for 1 ≤ j ≤ k .
In matrix form, this yields

q = B(p) Tp (5)

Substituting B(p)Tp to q followed by the matrix multiplication by B(p) of the two
sides of equilibrium equation (1) in Section 2.5 yields∑

1≤i≤m
B(p) hi(B(p)Tp, pTωi) = B(p) x,

which combined with (2) yields∑
1≤i≤m

B(p) hi(B(p)Tp, pTωi) =
∑

1≤i≤m
ωi , (6)

which can be rewritten as ∑
1≤i≤m

fi(p, p
Tωi) =

∑
1≤i≤m

ωi , (7)

the (equilibrium) equation for the factor exchange model satisfied by the pair
(p, ω) ∈ S ×Ω.

Sufficiency. Let (p, ω) ∈ S × Ω be an equilibrium of the factor exchange model.
Define q = B(p)Tp ∈ X and let

x =
∑

1≤i≤m
hi(q, p

Tωi). (8)

Each vector hi(q, pTωi) belongs toX = Rk++ as does the sum x =
∑

1≤i≤m hi(q, p
Tωi).

Left multiplication by B(p) of (8) yields

B(p) x = B(p)
∑

1≤i≤m
hi(q, p

Tωi). (9)

Since p ∈ S solves (7) and, therefore, (6), the right-hand side term of (9) is equal
to
∑

1≤i≤m ωi , from which follows the equality

B(p) x =
∑

1≤i≤m
ωi ,

which is equilibrium equation (2) in Section 2.5. The triple (q, p, ω) is therefore
an equilibrium of the Heckscher-Ohlin model.

Factor content of equilibrium allocations

With the factor content of the goods bundle x defined as equal to y = B(p)x in
Section 2.4, the allocation of factor contents for the equilibrium allocation associ-
ated with the equilibrium (q, p, ω) ∈ Ẽ is them-tuple

Ä
B(p)hi(q, p

Tωi)
ä
∈ (R`++)m.
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Proposition 2. Let (q, p, ω) ∈ Ẽ be an equilibrium of the Heckscher-Ohlin model.
The factor content of the corresponding equilibrium allocation is the factor alloca-
tion associated with the equilibrium (p, ω) ∈ E in the factor exchange model.

Proof. Follows readily from equality fi(p, pTωi) = B(p)hi(B(p)Tp, p, pTωi).

Net trade in factor contents at the equilibrium (q, p, ω) ∈ Ẽ in the Heckscher-
Ohlin model is represented by the vector

Ä
fi(p, p

Tωi)− ωi
ä
∈ (R`)m.

4.2. Strong equivalence

Let the maps α : X × S ×Ω→ S ×Ω and β : S ×Ω→ X × S ×Ω be defined by
α(q, p, ω) = (p, ω) and β(p, ω) = (B(p)Tp, p, ω). It then comes:

Proposition 3.

i) The maps α and β are smooth;
ii) α ◦ β = idS×Ω;
iii) The map β : S ×Ω→ X × S ×Ω is an embedding;
iv) The image F = β(S × Ω) is a smooth submanifold of X × S × Ω that is

diffeomorphic to S ×Ω;
v) α(Ẽ) = E and β(E) = Ẽ;

Proof. Properties (i) and (ii) are obvious. It follows from (i i) combined with
Lemma B.1 in Appendix B that β is an embedding, which proves (i i i). Then,
(iv) follows from (i i) combined with the definition of an embedding. Property (v)

follows readily from Proposition 1.

It follows from Proposition 3 that maps α̃ : Ẽ → E and β̃ : E → Ẽ can be
defined by the same formulas as for the maps α and β. The following Corollary is
then obvious.

Corollary 4.
α̃ ◦ β̃ = idE ; β̃ ◦ α̃ = idẼ .

The following Theorem states a property relating the Heckscher-Ohlin model
and its associated factor exchange model. This property is also taken as the
definition of the strong equivalence of these two models. This concept of strong
equivalence is closely related to the equivalence concept for smooth maps of Differ-
ential Topology (see for example [14], Chapter III, Definition 1.1. or [5], Definition
5.4.2) because, as we will see shortly, the strong equivalence of the two models
implies the equivalence in the sense of Differential Topology of the two natural
projections π : E → Ω and π̃ : Ẽ → Ω.

Theorem 5 (and definition of strong equivalence). The following diagram is com-
mutative:
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Ω

π̃ π

S × ΩX × S × Ω

Ẽ E

β

α

β̃

α̃

Proof. Follows readily from the formulas defining the maps α, α̃, β and β̃.

5. Properties of the induced demand functions for fac-
tors

The equivalence theorem 5 enables one to establish properties of the Heckscher-
Ohlin model from those of the associated factor exchange model. The properties
of the latter model depend on the properties of the m-tuple (fi) of consumers’
induced demand functions for factors. The question is therefore how the properties
of the induced factor demand function fi depend on those of consumer i ’s demand
function for consumption goods hi .

5.1. Smoothness (S) and Walras law (W)

Proposition 6.

i) (S) for hi =⇒ (S) for fi ;
ii) (W) for hi =⇒ (W) for fi .

Proof. (i). Let hi satisfy (S). The production matrix function p → B(p) is
smooth by Proposition A.7 (i) of the Appendix. The demand function fi(p, wi) =

B(p) hi(B(p)Tp, wi) is smooth as being the composition of two smooth functions.

(ii). Let hi satisfy (W). It then comes

pT fi(p, wi) = pTB(p) hi(B(p)Tp, wi) = qThi(q, wi) = wi .

From now on in this paper, all demand functions hi and, therefore, the induced
demand functions fi , satisfy (S) and (W).

5.2. Boundary behavior (A)

Proposition 7. (A) for hi =⇒ (A) for fi .
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Proof. Factor price vectors are not normalized. Let (pt , w t
i ) ∈ R`++ be a sequence

of non-normalized price and income vectors converging to (p0, w 0
i ) ∈ R`+ × R++,

with some but not all coordinates of the price vector p0 equal to zero. It follows
from Proposition A.5 (v) that, for each good j , with 1 ≤ j ≤ k , there is at least
one factor κ whose demand bκj (pt) tends to +∞.

Let qt = B(pt)Tpt . By continuity, the sequence qt tends to a limit q0 ∈ Rk+,
where some coordinates of q0 may be equal to 0. If none of these coordinates
are equal to 0, continuity implies limt→∞ hi(q

t , w t
i ) = hi(q

0, w 0
i ) ∈ Rk++. It then

follows from

fi(p
t , w t

i ) = B(pt) hi(B(pt)Tpt , w t
i ) = B(pt) hi(q

t , w t
i )

that limt→∞ ‖fi(pt , w t
i )‖ is equal to +∞ by Proposition A.5 (v) of the Appendix. If

some coordinates of q0 are equal to 0, it follows from Property (A) that is satisfied
by hi that lim supt→∞ ‖hi(qt , w t

i )‖ = +∞. This implies that the demand for at
least one production factor κ must tend to +∞.

5.3. Weak axiom of revealed preferences (WARP)

Proposition 8. (WARP) for hi =⇒ (WARP) for fi .

Proof. (i). Let (p, wi) and (p′, w ′i ) be such that (p′)T fi(p, wi) ≤ w ′i and fi(p, wi) 6=
fi(p

′, w ′i ) . Assume p = p′. Inequality (p′)T fi(p, wi) ≤ w ′i becomes by (W) wi ≤ w ′i .
The assumption fi(p, wi) 6= fi(p, w

′
i ) implies wi 6= w ′i , from which follows wi < w ′i .

Then, by (W), it comes pT fi(p′, w ′i ) = w ′i > wi .
Let now p 6= p′. The inequality (p′)T fi(p, wi) ≤ w ′i can be spelled out as

(p′)TB(p) hi(B(p)Tp, wi) ≤ w ′i . (10)

For q = B(p)Tp and q′ = B(p′)Tp′, the positivity of matrices B(p) and B(p′)

and of the demand vector hi(q, wi) ∈ X combined with the (strict) inequality
(p′)TB(p′) < (p′)TB(p) that is satisfied by Proposition A.5 (i) implies the strict
inequality

(p′)TB(p′) hi(q, wi) < (p′)TB(p) hi(q, wi),

which, combined with (10), yields

(q′)Thi(q, wi) < w ′i . (11)

This strict inequality implies the inequality hi(q, wi) 6= hi(q
′, w ′i ). (Otherwise,

equality hi(q, wi) = hi(q
′, w ′i ) implies (q′)Thi(q, wi) = (q′)Thi(q

′, w ′i ) = w ′i by
(W), a contradiction with (11).)

By (WARP) satisfied by hi , inequality (11) implies the strict inequality

qThi(q
′, w ′i ) > wi , (12)

which can be rewritten as

pTB(p) hi(q
′, w ′i ) > wi . (13)
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It follows again from the positivity of matrices B(p), B(p′) and the demand vector
hi(q

′, w ′i ) ∈ X that inequality pTB(p) ≤ pTB(p′), a consequence of Proposition
A.5 (i), implies inequality

pTB(p)hi(q
′, w ′i ) ≤ pTB(p′)hi(q

′, w ′i ).

This inequality can be rewritten as

qThi(q
′, w ′i ) ≤ pTB(p′)hi(q

′, w ′i ) = pT fi(p
′, w ′i ).

Combining this inequality with the strict inequality (12) yields

pT fi(p
′, w ′i ) > wi ,

which proves (WARP) for fi .

5.4. Negative definiteness of the truncated Slutsky matrix (ND)

Proposition 9. (ND) for hi =⇒ (ND) for fi .

Proof. The factor price vector p ∈ R`++ is not normalized in this part because
the computation of Slutsky matrices requires taking derivatives with respect to
the prices of all factors including the numeraire. Without price normalization,
the factor demand function fi(p, wi) is homogeneous of degree zero. The ` × `
matrix ∂pfi(p, wi) consists of the first order derivatives of fi with respect to the
(coordinates of the) price vector p. Similarly, let ∂qhi(q, wi) denote the k × k
matrix of partial derivatives for the goods demand function hi with respect to the
goods price vector q ∈ X. Let q = B(p)Tp .
Step 1: Negative definiteness of the restriction of the quadratic form associated
with matrix ∂qhi(q, wi) to the hyperplane {z ∈ Rk | zThi(q, wi) = 0}. It follows
from Hildenbrand and Jerison [16] that (ND) for hi is equivalent to the restriction
of the quadratic form

z ∈ Rk → zT∂qhi(q, wi) z

to the hyperplane hi(q, wi)⊥ = {z ∈ Rk | zThi(q, wi) = 0} being negative definite.
Step 2: ∂pfi(p, wi) = DB(p) hi(B(p)Tp, wi) + B(p) ∂phi(B(p)Tp, wi). Follows
from taking the derivative of the product fi(p, wi) = B(p)hi(B(p)Tp, wi) with re-
spect to the price vector p ∈ R`++.

Step 3: ∂phi(B(p)Tp, wi) = ∂qhi(q, wi)B(p)T . Application of the chain rule yields

∂phi(B(p)Tp, wi) = ∂qhi(q, wi)D
Ä
B(p)Tp

ä
.

It then suffices to apply Proposition A.7, (iii).
Step 4: ∂pfi(p, wi) = DB(p) hi(q, wi) +B(p) ∂qhi(q, wi)B(p)T . It suffices to sub-
stitute the expression obtained in Step 3 in the formula of Step 2.
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Step 5: The quadratic form defined v ∈ R` → vTDB(p) hi(q, wi)v is negative
semi-definite, with rank `− 1 and vTDB(p) hi(q, wi)v < 0 for v not collinear with
p. The column matrix B(p) hi(q, wi) is equal to

B(p) hi(q, wi) =
∑

1≤j≤`
bj(p) hji (q, wi).

Its partial derivative with respect to p (q is considered as fixed and independent of
p in this formula) is the `× ` matrix

DB(p) hi(q, wi) =
∑

1≤j≤`
(Dbj(p)) hji (q, wi).

Each square matrix Dbj(p) defines a quadratic form that is negative semidefinite,
with rank k − 1 and kernel collinear with p by Proposition A.5, (v) and (vii).

The linear combination of these negative semidefinite quadratic forms with the
strictly positive coefficients hji (q, wi), with 1 ≤ j ≤ k , is negative semidefinite and
takes a value different from zero. It is therefore strictly negative for any vector
v ∈ R` that is not collinear with the price vector p ∈ R`++.
Step 6: v ∈ fi(p, wi)

⊥ implies B(p)T v ∈ hi(B(p)Tp, wi)
⊥. The relation v ∈

fi(p, wi)
⊥ is equivalent to vT fi(p, wi) = vTB(p)hi(B(p)Tp, wi) = 0. This relation

is equivalent to z = B(p)T v ∈ hi(B(p)Tp, wi)
⊥.

Step 7: pT fi(p, wi) 6= 0 for any p ∈ R`++. Follows readily from Walras law:
pT fi(p, wi) = wi 6= 0.
Step 8: vT∂pfi(p, wi) v < zT∂qhi(q, wi) z for any v 6= 0 ∈ fi(p, wi)⊥, q = B(p)Tp

and z = B(p)T v . Let v 6= 0 ∈ hi(q, wi)⊥. The vector v is not collinear with
p. Assume the contrary. There exists λ 6= 0 with v = λp. Then, it comes
vT fi(p, wi) = λpT fi(p, wi) 6= 0 by Step 7, a contradiction.

The strict inequality
vTDB(p) hi(q, wi) v < 0

then follows from Step 5. The combination with Step 4 implies

vT∂pfi(p, wi) v = vTDB(p) hi(q, wi) v + vTB(p) ∂qhi(q, wi)B(p)T v ,

from which follows the strict inequality

vT∂pfi(p, wi) v < zT∂qhi(q, wi) z. (14)

Step 9: The restriction of the quadratic form defined by ∂pfi(p, wi) to the hyper-
plane fi(p, wi)⊥ is negative definite. Follows readily from the strict inequality (14)
combined with the negative definiteness of the restriction of the quadratic form
defined by ∂qhi(q, wi) to the hyperplane hi(q, wi)⊥ proved in Step 1.
Step 10: fi satisfies (ND). The equivalence of the property stated in Step 9 with
(ND) for fi now follows from Hildenbrand and Jerison [16].
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6. Applications to the Heckscher-Ohlin model

6.1. Regular and singular economies for the Heckscher-Ohlin
model

The properties of the Heckscher-Ohlin model considered in this paper are articu-
lated around the concept of smooth mappings and their critical and regular points
and values. More specifically, assume that the natural projection π̃ : Ẽ → Ω is a
smooth map between smooth manifolds. (This property will be shown to be true
in a moment.)

One defines a regular (resp. critical) point of that map as an element x of
Ẽ such that the derivative Dx π̃ : Tx(Ẽ) → Tπ̃(x)(Ω) is (resp. is not) a bijection.
The spaces Tx(Ẽ) and Tπ̃(x)(Ω) are the tangent spaces to Ẽ and Ω at x ∈ Ẽ and
π̃(x) ∈ Ω respectively. By definition, a singular value ω ∈ Ω of the map π̃ : Ẽ → Ω

is the image of a critical point, i.e., there exists x ∈ Ẽ that is a critical point and
such that π̃(x) = ω ∈ Ω. Let Σ denote the set of singular values of the projection
map π̃ : Ẽ → Ω. This set is the image by π̃ of the set of critical points.

The element ω ∈ Ω is by definition a regular value of the map π̃ : Ẽ → Ω if it
is not a singular value. The set of regular values R of the map π̃ is therefore the
complement Ω \ Σ of the set of singular values Σ. Note that one often uses the
terms of regular and singular economies instead of regular and singular values of
the natural projection π̃.

6.2. The natural projection as a smooth mapping

The following Proposition describes properties of the Heckscher-Ohlin model with
demand functions hi satisfying no other assumption than (S) and (W).

Proposition 10.

i) The “equilibrium manifold” of the Heckscher-Ohlin model Ẽ is a smooth
submanifold of X × S ×Ω diffeomorphic to R`m.

ii) The natural projection for the Heckscher-Ohlin model π̃ : Ẽ → Ω is smooth.
iii) The regular and singular values of the natural projection π̃ : Ẽ → Ω are the

regular and singular values respectively of the natural projection π : E → Ω

of the associated factor exchange model.
iv) The set of factor contents for the equilibrium allocations of the Heckscher-

Ohlin model is identical to the set P of equilibrium allocations of the associ-
ated factor exchange model.

v) The set P is pathconnected.

Proof. Property (i) follows from Proposition 3 (iv) combined with the property that
E, the equilibrium manifold of the associated factor exchange model, is a smooth
submanifold of S × Ω diffeomorphic to R`m when all factor demand functions fi
satisfy (S) and (W). Properties (ii) and (iii) follow readily from the commutativity
of the lower triangle in the diagram of Theorem 5. Property (iv) is essentially
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a reformulation of Proposition 2. To prove (v), it suffices to observe that the
set of no-trade equilibria in the factor exchange model is pathconnected by [7],
Proposition 5.2, and that the set P is the image by a continuous map, the natural
projection π : E → Ω, of the set of no-trade equilibria.

Sard’s theorem [21] implies that the set of singular values Σ of the natural
projection π̃ has measure zero in Ω. This set is therefore small from a measure
theoretic point of view. But it can still be large in a topological sense as, for
example, the set of rational numbers Q that is dense in R. This does not happen
if the set Σ happens to be closed as is the case if the map π̃ is proper, i.e., the
preimage π̃−1(K) of every compact subset K of Ω is compact. The following
Proposition gives us a sufficient condition for the properness of π̃:

Proposition 11. If at least one demand function for goods hi satisfy (A), the
natural projection of the Heckscher-Ohlin model π̃ : Ẽ → Ω is proper.

Proof. It follows from Theorem 5 that π̃ is proper if and only if the natural projec-
tion π : E → Ω is proper. This follows from Proposition 7.1 in [7] if some demand
function fi satisfies the boundary condition (A). It then suffices that some demand
function for goods hi satisfies (A).

π̃

Ω

Ẽ

Σ
P

R1

Figure 1: Heckscher-Ohlin model: equilibrium manifold and natural projection

The smooth and proper map π̃ : Ẽ → Ω is therefore a ramified covering of
Ω, which is illustrated on Figure 1. As such, it entails quite a few remarkable and
economically important properties for the Heckscher-Ohlin model. These properties
include in particular the genericity of regular economies (i.e., the set of regular
economies R is open with full measure in Ω) and the finite odd number of equilibria
at regular economies. For more details on the derivation of those properties from
the smoothness and properness of the natural projection, see [7], Chapter 7.
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This theory is often known as the theory of regular economies and was first
developed for the exchange model by Debreu and Dierker using a different approach
[11, 12].

6.3. Number of equilibria

All demand functions for goods hi are now assumed to satisfy (S), (W) and
(WARP). In addition, at least one demand function hi satisfies (A) and (ND).
Property (WARP) is economically important because it essentially says that the
preferences (possibly non transitive) that underlie consumers’ demand functions
for goods are convex. In other words, (WARP) captures the essence of convexity.
Property (ND) satisfied by just one demand function is only a slight strengthening
of (WARP) because it amounts to substituting a strict unequal sign to a large one.

Unsurprisingly, much stronger properties of the Heckscher-Ohlin model follow
from the assumption of convexity conveyed by (WARP). The number of equilibria
associated with the regular economy ω ∈ R becomes related to the location of ω
with respect to the set P of factor contents of equilibrium allocations, a set that
coincides with the set of equilibrium allocations of the factor exchange model by
Proposition 2. More specifically, it comes:

Proposition 12. The set P of factor contents of equilibrium allocations is contained
in one connected component of the set of regular economies R. Equilibrium is
unique for all endowment vectors ω in that component.

Proof. Follows from the same property for the exchange model. See [2] or Propo-
sition 8.8 in [7].

Let R1 denote the connected component of the set of regular economies R

that contains the set P . A sufficient condition for the endowment vector ω to
belong to R1 is that the distance of ω to the set P is small enough. A proxy for
that distance is the length of the vector of net trades in factor contents.

Trade Theory: The two-country case

Proposition 12 can be improved into a complete characterization of economies
with a unique equilibrium in the case of two countries.

Proposition 13. For m = 2, the set of regular economies with a unique equilibrium
is the component R1.

Proof. By Theorem 5, it suffices to prove this property for the factor exchange
model. That model having m = 2 consumers, the property follows from [3]. See
[4] or [6] for two alternative proofs of the same property.

It follows from Proposition 13 that if sufficiently small volumes of net trades in
factor contents imply the uniqueness of equilibrium, large volumes generally imply
the multiplicity of equilibria.
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7. Demand functions resulting from utility maximiza-
tion

So far, no use has been made of utility functions. Only demand functions have
been considered. The goods demand function hi has been shown to induce a factor
demand function fi . This was enough to define the factor exchange model associ-
ated with the Heckscher-Ohlin model and for proving the equivalence of these two
models. This approach has undeniably the advantage of simplicity. Nevertheless,
some readers may feel frustrated by the absence of any reference to preferences
or even utility functions. In this section, I try to fill in this void by assuming that
consumer i ’s preferences are represented by a utility function ui : X → R that
satisfies the following properties: 1) Smoothness; 2) Smooth monotonicity, i.e.,
Dui(xi) ∈ X for xi ∈ X where Dui(xi) is the gradient vector defined by the first-
order derivatives of ui ; 3) Smooth strict quasi-concavity, namely, the restriction of
the quadratic form defined by the Hessian matrix D2ui(xi) to the tangent hyper-
plane to the indifference surface {yi ∈ X | ui(yi) = ui(xi)} through xi is negative
definite; 4) The indifference surface {yi ∈ X | ui(yi) = ui(xi)} is closed in Rk for
all xi ∈ X. These properties are standard in the literature on smooth economies.
See, for example, [7], Chapter 2.

Maximizing the utility ui(xi) with xi ∈ X subject to the budget constraint
qT xi ≤ wi then has the unique solution hi(q, wi). It is well-known that the demand
function hi : X ×R++ → X satisfies (S), (W), (H), (A), (WARP) and (ND). (See
[7], Section 3.4.)

The following Proposition shows us that the induced demand function for goods
fi then results from the budget constrained maximization of some utility function
for factors vi that is induced by the utility function ui for goods.

Proposition 14. Consumer i ’s utility for factors induced by the utility for goods
ui : Rk++ → R is the function vi : R`++ → R defined by

vi(yi) = min
p∈S

ui
Ä
hi(B(p)Tp, pT yi)

ä
.

for yi ∈ R`++.

Proof. Step 1. With ûi(q, wi) denoting consumer i ’s indirect utility function for
goods, Roy’s identities with respect to ûi and the demand function hi takes the
form:

∂wi ûi(q, wi)hi(q, wi) = −∂qûi(q, wi).

Left multiplication by B(p) yields

∂wi ûi(q, wi)B(p) hi(q, wi) = −B(p) ∂qûi(q, wi),

which, after substituting fi(p, wi) = B(p)hi(q, wi), yields

∂wi ûi(q, wi)fi(p, wi) = −B(p) ∂qûi(q, wi) (15)
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Step 2. Define the function v̂i : S × R++ → R by

v̂i(p, wi) = ui
Ä
hi(B(p)Tp, wi)

ä
= ûi(q, wi),

with q = B(p)Tp. The derivative with respect to wi of v̂i(p, wi) is equal to

∂wi v̂i(p, wi) = ∂wi ûi(B(p)Tp, wi) = ∂wi ûi(q, wi). (16)

Similarly, the derivative with respect to p yields after application of the chain
rule

∂pv̂i(p, wi)
T = ∂qûi(q, wi)

T D(B(p)Tp).

Equality D(B(p)Tp) = B(p)T of Proposition A.7 (iii) of the Appendix implies

∂pv̂i(p, wi)
T = ∂qûi(q, wi)

T B(p)T

and, after transposition,

∂pv̂i(p, wi) = B(p) ∂qûi(q, wi) . (17)

Step 3.
Substitution of (16) and (17) in (15) yields the equality

∂wi v̂i(p, wi) fi(p, wi) = −∂pv̂i(p, wi),

which is precisely Roy’s identity for the indirect utility function v̂i and the induced
demand function fi .
Step 4. One concludes by observing that the direct utility function vi associated
with the indirect utility function v̂i is such that

vi(yi) = min
p∈S

v̂i(p, p
T yi).

A brief application to the 2× 2× 2 case

If countries’ (consumers) utility functions for goods satisfy the standard assump-
tions recalled at the beginning of this Section, the associated demand functions
for goods hi satisfy (S), (W), (H), (A), (WARP) and (ND). From Section 5, the
induced demand functions for factors fi satisfy the same properties. This implies
that the properties of the Heckscher-Ohlin model stated in Section 6 are also satis-
fied under the restriction that total factor resources are constant, the reason being
that these properties are then satisfied by the associated factor exchange model.
(It is an open problem whether this property is satisfied for demand functions that
do not result from the maximization of transitive preferences, i.e., preferences
representable by utility functions.)

Assume that total resources in factors are fixed and that countries’ (con-
sumers’) preferences are defined by utility functions. Lancaster [18] and Dixit
and Norman [13], pp. 108–110 then associate a 2 × 2 Edgeworth box diagram
in the factor space with a 2 × 2 × 2 Heckscher-Ohlin model. Nevertheless, that
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P
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Figure 2: Edgeworth box diagram with indifference curves for factors

diagram differs from the usual Edgeworth box diagram for exchange economies
because it contains no indifference curves. The definition of consumers’ induced
utility functions for factors and their properties (or, more precisely, the properties of
the associated factor demand functions) considerably enrich the Lancaster-Dixit-
Norman picture. In Figure 2, the point ω represents the endowments in factors of
the two consumers. Equilibrium is unique at the point ω of the Figure and the point
M represents the factor contents of the (unique) equilibrium allocation associated
with ω. The point M is located on the contract curve P . The vector ωM then
represents the net trade in factor contents. Note that the number of equilibria
is equal to three for endowment vectors ω ∈ R belonging to the shaded areas of
Figure 2.

8. Concluding comments

This paper underlines at the theory level the essential role played in international
trade by the volume of net trades in factor contents. Large volumes are associated
with multiple equilibria and singular economies. Discontinuities of equilibrium se-
lection maps at those singular economies translates into a high degree of volatility
of world factor prices.

In a totally different direction, the New and New New Trade Theories have
enriched the Heckscher-Ohlin model with countries having access to different tech-
nologies and with production that is subject to increasing returns to scale. These
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additional layers of complexity prevent the corresponding models from being equiv-
alent to simpler exchange models. Nevertheless, numerous examples of complex
models whose study has been illuminated by the properties of less complex ver-
sions suggest that the study of those models of international trade is likely to
benefit from the understanding of the Heckscher-Ohlin model gained through its
equivalence with an exchange model.
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A. Basic definitions and properties

A.1. Consumers’ demand functions for goods
The following properties (S), (W), (H), (A), (WARP) and (ND) are defined only for demand
functions for goods hi . Similar definitions apply also to demand functions for factors fi .

Definition A.1. Let hi : X × R++ → X be a demand functions for goods in the Heckscher-Ohlin
model.

i) (S) Smoothness: hi is smooth;
ii) (W) Walras law: qT hi(q, wi) = wi for any (q, wi) ∈ X × R++;
iii) (H) Homogeneity of degree zero: hi(λq, λwi) = hi(q, wi) for every λ > 0 and any (q, wi) ∈

X × R++;
iv) (A) Boundary behavior: Let (qt , w ti ) ∈ X × R++ be a sequence converging to (q0, w0

i ) ∈
Rk+ × R++ with q0 6= 0 but with some coordinates equal to 0, then lim sup ‖hi(qt , w ti )‖ =

+∞.
v) (WARP) weak axiom of revealed preferences:

(q′)T hi(q, wi) ≤ w ′i
hi(q, wi) 6= hi(q

′, w ′i )

™
=⇒ qT hi(q

′, w ′i ) > wi ;

vi) (ND) Negative definiteness of the truncated Slutsky matrix: The Slutsky matrix truncated
to its first k − 1 rows and columns is negative definite at any (q, wi) ∈ X × R++.
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A.2. Production

Production functions
The production function F j : R`+ → R+ is continuous; takes the value 0 on the boundary. In
addition, F j is smooth, monotone (i.e., ∂F j/∂ηκ > 0 for 1 ≤ κ ≤ `), homogeneous of degree one
and concave (constant returns to scale), with Hessian matrix D2F j(η) negative semi-definite and
of rank `− 1 on R`++.

The following properties of production functions are well-known. They are here for reader’s
convenience.

Proposition A.2.

i) DF j(η)Tη = F j(η) 6= 0 for η ∈ R`++;
ii) ηTD2F j(η) = D2F j(η) η = 0;
iii) The kernel of matrix D2F j(η) is the one-dimensional subspace generated by η ∈ R`++;
iv) The strict inequality zTD2F j(η) z < 0 is satisfied for any non-zero vector z ∈ R` that is not

collinear with η;

v) The bordered Hessian matrix
ï
D2F j(η) DF j(η)

DF j(η)T 0

ò
is invertible.

Proof. i) DF j(η)Tη = F j(η) 6= 0 for η ∈ R`++. By homogeneity of degree one, it comes F j(λη) =

λF j(η) with λ ∈ R. It then suffices to take the derivative with respect to λ (Euler’s identity). The
inequality DF j(η)Tη 6= 0 for η ∈ R`++ follows from F j(η) 6= 0.
ii) ηTD2F j(η) = D2F j(η)η = 0. The first order partial derivatives of F j are homogeneous of
degree zero. It then suffices to apply Euler’s identity to these derivatives.
iii) Kernel of matrix D2F j(η) collinear with η ∈ R`++. The rank of D2Fj(η) is equal to ` − 1. Its
kernel is therefore one dimensional. One concludes by observing that the kernel also contains the
vector η = (η1, . . . , η`) 6= 0.
iv) The strict inequality zTD2F j(η) z < 0 is satisfied for any non-zero vector z ∈ R` not collinear
with η. All the ` eigenvalues of the symmetric matrix D2F j(η) are real. A set of ` two by two
orthogonal eigenvectors corresponds to these eigenvalues. Furthermore, the vector η can be chosen
as the eigenvector associated with the eigenvalue 0. The `−1 remaining eigenvalues are then strictly
negative because of the rank assumption. Their associated eigenvectors generate a hyperplane that
is orthogonal to the vector η. The restriction to that hyperplane of the quadratic form defined by
matrix D2F j(η) is therefore negative definite.

The vector z ∈ R` is the sum z = z ′+ z ′′ of its orthogonal projections z ′ and z ′′, with z ′ in the
vector space generated by η and z ′′ in the hyperplane orthogonal to η. It comes zTD2F j(η)z =

(z ′′)TD2F j(η)z ′′ since z ′ is collinear with the vector η. The strict inequality (z ′′)TD2F j(η)z ′′ < 0

then follows from z ′′ 6= 0 whenever z is not collinear with η.

v) Bordered Hessian matrix
ï
D2F j(η) DF j(η)

DF j(η)T 0

ò
invertible. Assume the contrary. There exists a

vector z = (z̄ , z `+1) 6= 0 ∈ R` × R such thatï
D2F j(η) DF j(η)

DF j(η)T 0

ò ï
z̄

z `+1

ò
= 0.

This equality can be rewritten as

D2F j(η)z̄ + z `+1DF j(η) = 0 (18)

z̄TDF j(η) = 0. (19)

Left multiplication of (18) by z̄T yields, given (19),

z̄TD2F j(η) z̄ = 0.
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By (i i i), the vector z̄ is therefore collinear with η: z̄ = λη with λ ∈ R. By (i i), D2F j(η) z̄ = 0,
so that (18) becomes z `+1DF j(η) = 0. It then follows from DF j(η) 6= 0, itself a consequence of
(i), that z `+1 = 0. This implies z = λ(η, 0) ∈ R`+1. Equation (19) becomes ληTDF j(η) = 0,
which is equivalent to λDF j(η)Tη = 0. Combined with (i), this implies λ = 0, a contradiction
with z 6= 0.

Isoquants
The set {η ∈ R`++ | F j(η) = 1} is the analog for ` factors of the textbook isoquants with two
factors.

Proposition A.3.

i) The set {η ∈ R`++ | F j(η) ≥ 1} is strictly convex;
ii) Its recession cone is the non-negative orthant R`+.

Proof. i) Strict convexity of {η ∈ R`++ | F j(η) ≥ 1}. Let η and η′ in R`++ be such that F j(η) =

F j(η′) = 1. The vector η and η′ are not collinear. Otherwise, assume η′ = λη with λ 6= 1. Then,
we would have 1 = F j(η′) = F j(λη) = λF j(η) = λ, a contradiction with λ 6= 1.

The second derivative of the function t ∈ [0, 1] → F j((1 − t)η + tη′) is equal to (η′ −
η)TD2F j((1− t)η+ tη′)(η′ − η) and is strictly negative by Proposition A.2, (iv) because η′ − η is
not collinear with η. This implies the strict concavity of the function t ∈ [0, 1]→ F j((1−t)η+tη′),
hence the strict inequality F j((1− t)η+ tη′) > 1 for t ∈ (0, 1) and, therefore, the strict convexity
of the set {η ∈ R`++ | F j(η) ≥ 1}.

ii) Recession cone. The vector d ∈ R` defines a direction of recession for the set {η ∈ R`++ |
Fj(η) ≥ 1} if, for some η∗ in that set, the set {η∗+αd | α ≥ 0} is also contained in that set. This
is equivalent to having Fj(η∗ + αd) ≥ 1 for α ≥ 0. This is obviously satisfied by the monotonicity
and continuity of Fj for d ∈ R`+, which proves that the recession cone contains the non-negative
orthant.

Conversely, let d ∈ R` with at least one strictly negative coordinate. There is no loss of
generality in assuming d1 < 0. Let α > 0 be defined by η∗1 + αd1 = 0. Let αt > α be a
sequence with limt→∞ α

t = α. Then, limt→∞ F
j(η∗ + αtd) = 0, which contradicts the inequality

F j(η∗ + αtd) ≥ 1 and d cannot be a direction of recession.

Cost functions and factor demand functions of the production
sector
The following properties of the demand function for factors bj and cost function σj in order to
produce one unit of good j are also well-known, at least for the case of two factors. In this part,
the factor price vector p ∈ R`++ is not normalized.

Proposition A.4.

i) There is a unique factor bundle bj(p) ∈ R`++ that minimizes the cost of producing one unit
of good j given the factor price vector p ∈ R`++;

ii) The function bj : R`++ → R`++ is smooth and homogeneous of degree zero;
iii) The cost function σj : R`++ → R is smooth and homogeneous of degree one;
iv) The cost function σj is concave.

Proof. i) Existence and uniqueness of the solution to the constrained cost minimization problem.
Let η∗ ∈ R`++ be such that F j(η∗) ≥ 1. Adding the constraint pTη ≥ pTη∗ has no effect on the
solutions of the constrained cost minimization problem. The set defined by the two constraints is
not only closed as the intersection of two closed sets, it is also bounded for obvious reasons. It
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follows from the compactness of that set and the continuity of the cost function that a solution
exists to the constrained cost minimization problem.

The constraint F j(η) ≥ 1 is obviously binding by the monotonicity of F j . The proof that
the solution is unique is standard and proceeds by contradiction. Let η 6= η′ be two different
solutions. By definition, the equalities pTη = pTη′ and F j(η) = F j(η′) = 1 are satisfied. Let
η′′ = (η + η′)/2. It follows from the strict concavity of the production function F j restricted to a
line not going through the origin that the strict inequality F j(η′′) > 1. It then suffices η′′′ = λη′′

such that F j(η′′′) = 1 to get a contradiction to the definition of η and η′ as cost minimizers.
ii) Homogeneity and smoothness of the factor demand functions. Homogeneity of degree zero of
the demand function for factor p → bj(p) is obvious. Smoothness follows from the application of
the implicit function theorem to the first order conditions. These conditions take the form{

DF j(η)− µq = 0,

F j(η)− 1 = 0.

It is well-known that they are necessary and sufficient given the concavity of F j . Smoothness then
follows from Proposition A.2, (v).
iii) The cost function σj is smooth and homogeneous of degree one. Homogeneity is obvious.
Smoothness follows from the cost function being the product of two smooth functions.
iv) The cost function σj is concave. Let p 6= p′ in R`++. For t ∈ [0, 1], the two inequalities

σj(p) = pT bj(p) ≤ pT bj
(

(1− t)p + tp′
)

σj(p
′) = (p′)T bj(p

′) ≤ (p′)T bj
(

(1− t)p + tp′
)

follow from the definitions of σj(p) and σj(p′) as cost minimizing for p and p′ respectively. Multi-
plication by (1− t) and t of the first and second inequalities respectively followed by adding them
up yields

(1− t)σj(p) + tσj(p
′) ≤ σj

(
(1− t)p + tp′).

Remark 2. The above proof can easily be adapted to show that if p and p′ are not collinear and
t ∈ (0, 1), then, inequality (A.2) is strict.

Proposition A.5.

i) pT bj(p) < pT bj(p
′) for p and p′ not collinear;

ii) pT
∂bj
∂pκ

(p) = 0 for 1 ≤ κ ≤ `;
iii) bj = Dσj ;
iv) (p − p′)T (bj(p)− bj(p′)) ≤ 0;
v) The Jacobian matrix Dbj(p) defines a negative semidefinite quadratic form;
vi) Dbj(p)T p = 0;
vii) The Jacobian matrix Dbj(p) has rank `− 1;
viii) Let p0 = limt→∞ p

t where pt ∈ R`++ (non-normalized prices) and p0 6= 0 has some coordi-
nates equal to 0. Then, lim supt→∞ ‖bj(pt)‖ = +∞.

Proof.
i) Follows from the definition of bj(p) as cost minimizing.
ii) From (i), the function p′ → pT bj(p

′ is minimal at p′ = p. The first order derivatives at p′ = p

are equal to 0.

iii) The derivative of σj(p) = pT bj(p) with respect to pκ is equal to
∂σj(p)

∂pκ
= pT

∂bj
∂pκ

(p) + bκj (p).

It then suffices to apply (i i).
iv) Follows from the combination of the inequalities pT bj(p) ≤ pT bj(p′) and (p′)T bj(p

′) ≤ (p′)T bj(p).
v) The derivation of that property from (iv) is standard.
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vi) Dbj(p)T p = 0. Follows readily from Euler’s identity applied to bj(p), a function that is homo-
geneous of degree zero.
vii) The idea of the proof is to show that any vector v 6= 0 ∈ R` in the kernel of Dbj(p) is collinear
to the factor price vector p ∈ R`++. From the first order conditions satisfied by bj(p), it comes
DF j(bj(p))− µ(p)p = 0 where µ(p) 6= 0.

Taking the derivative of this equality with respect to the price vector p yields

D2F j(bj(p))Dbj(p) = µ(p)I + p(Dµ)T

with I the ` × ` identity matrix. Right multiplication of this equality by v 6= 0 in the kernel of
Dbj(p) yields

µ(p)v = −p
(

(Dµ)T v
)

where (Dµ)T v is a real number. This equality implies that the vector v 6= 0 is necessary collinear
with the factor price vector p.
viii) Step 1. One sees readily that The set {y ∈ R`++ | F j(y) = 1 and y ≤ (A, . . . , A)} is bounded
away from zero for A > 0.
Step 2. The proof now proceeds by contradiction. Let y t = bj(p

t) and assume lim supt→∞ ‖y t‖ <
+∞. This is equivalent to the sequence ‖y t‖ being bounded. There exists a real number A > 0

such that the inequalities 0 ≤ y t ≤ (A,A, . . . , A) are satisfied for all t. Recall that F j(y t) = 1.
Therefore, there exists by Step 1 yA ∈ R`++ such that yA ≤ y t ≤ A for all t. By considering if
necessary a subsequence, there is no loss in generality by assuming that the sequence y t converges
to some y0 that satisfies the inequalities yA ≤ y0 ≤ A. By continuity, it comes F j(y0) = 1.
In addition, the price vector pt is collinear with the gradient vector DF j(y t), i.e., there exists
λt > 0 such that pt = λtDF j(y t). The sequences pt and DF j(y t) are bounded from above and
bounded away from zero: therefore, the sequence λt is also bounded from above and away from
zero. Considering once more and if necessary a subsequence, the sequence λt converges to some
λ0 > 0. It then follows from the continuity of DF j that, at the limit, p0 = λ0DF j(y0). The
contradiction comes from some coordinates of p0 being equal to zero while each partial derivative
of the production function F j is different from zero.

The production matrix
Definition A.6. The production matrix associated with the (non normalized) factor price vector
p ∈ R`++ is the `× k matrix B(p) =

[
b1(p) b2(p) . . . bk(p)

]
.

The following properties of the matrix function p → B(p) extend those of the demand functions
for factors of the production sector.

Proposition A.7.

i) The function p → B(p) is smooth.
ii) DB(p)T p = 0.
iii) D(B(p)T p) = B(p)T .
iv) pTB(p) < pTB(p′) for p and p′ not collinear.

Proof. (i) Follows from Proposition A.4 (ii).
(ii) Follows readily from Proposition A.5 (vi).
iii) The derivative of the matrix product B(p)T p is equal to D(B(p)T p) = B(p)T +DB(p)T p. One
concludes by applying (i).
iv) Follows readily from Proposition A.5 (i).
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B. A lemma about embeddings
An embedding φ : X → Y is a smooth map between two smooth manifolds X and Y that is an
immersion (its derivative map Dφ(x) : TxX → Tf (x)Y between the tangent spaces TxX and Tf (x)Y

is into, i.e., an injection) and also a homeomorphism between its domain X and its image φ(X).
A very nice feature of embeddings is that the image φ(X) is then also a smooth submanifold of
the range Y . Embeddings provide a very convenient way of proving that some subset φ(X) of the
smooth manifold Y is actually a smooth submanifold of Y . The global structure of the smooth
submanifold φ(X) as homeomorphic to X then comes as a courtesy. The application of the following
lemma requires little more than the computation of derivatives (i.e., Jacobian matrices).

Lemma B.1. Let φ : X → Y and ψ : Y → X be two smooth mappings between smooth manifolds
with:

i) ψ : Y → X is onto (i.e., a surjection);
ii) φ ◦ ψ = idY .

Then, Z = φ(X)) is a smooth submanifold of Y diffeomorphic to X.

Proof. The strategy is to show that the smooth map φ : X → Y is an embedding, which therefore
implies that its image Z = φ(X) is a submanifold of Y diffeomorphic to X.

To prove the homeomorphism part, we first observe that φ, viewed as a map from X to
Z = φ(X), is a surjection. To prove that φ is an injection, assume φ(x) = φ(x ′). Since ψ : Y → X

is onto, there exist y and y ′ with x = ψ(y) and x ′ = ψ(y ′). It comes φ(x) = φ ◦ ψ(y) = y and
φ(x ′) = φ ◦ ψ(y ′) = y ′, hence y = y ′. This proves that φ viewed as a map from X to Z is a
continuous bijection.

Let ψ |Z denote the restriction of the map ψ to the subset Z of Y . The relation ψ ◦ φ = idY
implies (ψ |Z) ◦ φ = idY from which follows that the inverse map of φ (as a map between X and
Z) is ψ |Z. The maps φ : X → Y and ψ : Y → X are continuous (in fact, smooth). It follows
readily from the definition of the induced topology of Z that the restriction ψ |Z : Z → X is also
continuous as well as the map (also denoted by) φ : X → Z = φ(X). (Note that the fact that Z is
simply a subset of Y equipped with the induced topology does not make it a “nice” subset of Y yet,
which prevents us from using the above argument to infer that ψ |Z : Z → X and φ : X → Z are
smooth mappings.) At the moment, these two maps are just continuous. They therefore define
inverse homeomorphism between X and Z.

To prove the immersion part, take y ∈ Y . Let x = ψ(y). The relation φ ◦ ψ = idY yields, by
taking its derivative,

Dφ(x) ◦Dψ(y) = idTy (Y )

where Ty (Y ) denotes the tangent space to the manifold Y at y . This relation implies that the
linear map between tangent spaces Dψ(y) : Ty (Y )→ Tx(X) is an injection. The map φ : X → Y

is therefore an immersion. In combination with the homeomorphism part above, this proves that
the map φ : X → Y is an embedding.
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