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Abstract

For a given frequency of price adjustment, monetary non-neutrality is smaller if

older prices are disproportionately more likely to change. This type of selection for

the age of prices provides a complete characterization of price-setting frictions in time-

dependent sticky-price models. Selection for older prices is weaker if: 1) the hazard

function of price adjustment is less strongly increasing; 2) there is sectoral heterogeneity

in price stickiness; 3) durations of price spells are more variable. Weaker selection for

old prices implies larger monetary non-neutralities. In particular, the Taylor (1979)

model exhibits maximal selection for older prices, whereas the Calvo (1983) model

exhibits no selection.
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1 Introduction

Infrequent price changes at the microeconomic level do not necessarily imply that monetary

disturbances have large real macroeconomic effects. For the same frequency of price changes,

the real effects of a monetary shock are small if the firms adjusting their prices are also the

ones most likely to change prices by a large amount. The importance of this selection effect

has been well understood at least since Caplin and Spulber (1987). In their model, large

price adjustments by a small fraction of firms completely offset monetary shocks and induce

money neutrality. This is because in Caplin and Spulber (1987), as in menu-cost models

more generally, there is self-selection: firms always have the option of incurring a menu cost

to adjust their prices, so that adjusting firms are also the ones which would like to adjust

their prices by the greatest amount.1

In this paper we argue that selection effects do not necessarily hinge on self-selection.

In fact, we show that selection is relevant in time-dependent sticky-price models, where the

probability of a price change depends only on the time elapsed since the price was last reset.

This is because the real effects of a monetary shock differ depending on whether adjusting

firms are more or less likely to have prices that pre-date the shock. More fundamentally, we

show that in such an economy, for a given average frequency of price changes, the real effects

of a monetary shock depend solely on this type of selection. In particular, the real effects of

nominal shocks are larger if older prices are relatively less likely to be adjusted.

A proper understanding of the fundamental role of selection in determining the real effects

of monetary shocks in time-dependent models is important, since such models are prevalent

in the sticky-price literature. While originally used for tractability, subsequent literature has

shown that time-dependent pricing rules emerge optimally in the presence of information

costs as in Caballero (1989), Bonomo and Carvalho (2004), and Reis (2006).

We tie selection to features of the distribution of price spells, some of which have been

singled out in previous literature as important in determining the extent of monetary non-

neutrality in time-dependent price-setting models.2 In particular, we show that:

1) Calvo (1983) pricing implies no selection, as the probability of price changes does

1While Caplin and Spulber (1987) do not consider menu costs explicitly, the state-dependent pricing
rule that they postulate can be rationalized by the presence of such costs. For seminal analyses of selection
effects in menu-cost models, see Danziger (1999) and Golosov and Lucas (2007).

2While all results that explicitly tie selection to non-neutrality are original to this paper, some of the
other mathematical results presented here were first derived in Carvalho and Schwartzman (2008) – a retired
working paper that we never submitted for publication. Whenever appropriate, we point out which results
were derived in our 2008 paper.
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not depend on the age of the price. In contrast, Taylor (1979) pricing implies maximum

selection, since changing prices are always the ones that have been in place for longest. This

explains why, for a given frequency of price changes, Taylor pricing generates a lower degree

of monetary non-neutrality than Calvo pricing (Kiley, 2002).

2) If the hazard of price adjustment is increasing, then selection for older prices is rela-

tively stronger, and the real effects of a nominal shock are smaller than under Calvo pricing.

This conforms with discussions by Dotsey, King, and Wolman (1997) and Wolman (1999).

Moreover, the more increasing the hazard of price adjustment is, the larger selection effects

are.

3) Under certain conditions, we can show that cross-sectoral heterogeneity in price sticki-

ness is associated with lower (and possibly negative) selection, as sectors with low frequency

of price changes have both a larger proportion of old prices and a lower probability of price

changes. This clarifies and generalizes the finding in Carvalho (2006) that heterogeneity in

price setting can lead to larger real effects of monetary shocks.

4) When comparing two economies, one in which the distribution of the duration of price

spells is a mean preserving spread of the other, selection for older prices is weaker – and

the real effects of the shock are larger – in the economy with more variable price spells.

In particular, for a commonly used specification for monetary shocks, the mean and the

variance of the duration of price spells are sufficient statistics for the real effects of nominal

disturbances.3

Our framework encompasses a great degree of generality. As in Dotsey, King, and Wolman

(1997, section 3), price changes arrive according to a generic function of the time elapsed

since the last price adjustment. We are able to analyze the impact of quite general monetary

shocks thanks to an equivalence between the real effects of monetary shocks in sticky-price

models and in sticky-information models, as in Mankiw and Reis (2002).4 For most of the

paper, we focus on an environment in which the optimal price for a given firm is neither a

strategic substitute nor a strategic complement to the prices set by other firms – what we

refer to as strategic neutrality in price setting. As a robustness check, we investigate the role

of selection in settings with strategic complementarity or substitutability through numerical

3Without linking it to selection, we first proved this result in Carvalho and Schwartzman (2008). Subse-
quently, Vavra (2010) and Alvarez et al. (2012) provided alternative proofs of the same result. The result is
also complementary to the one in Alvarez, Le Bihan, and Lippi (2014), who, in a different setup, connect the
real effects of monetary shocks to a moment of the size distribution of price changes rather than moments
of the distribution of price spells.

4We first proved this equivalence result in Carvalho and Schwartzman (2008).
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simulations. The results suggest that the relationship that we uncover between selection

and real effects of monetary shocks is robust to those strategic interactions. Finally, we also

analyze the implications of selection for private and social efficiency in face of monetary and

other types of shocks.

Our paper is not the first one to identify a role for selection in time-dependent pricing

models. Using a recursive formulation in a discrete-time setting, Sheedy (2010) shows that

selection for older prices is associated with higher inflation persistence – an issue that we do

not examine. He does not, however, examine the implications of selection for the real effects

of monetary shocks. Subsequent work by Alvarez, Le Bihan, and Lippi (2014) elaborates on

the link that we uncover between time-dependent selection and monetary non-neutrality in a

different setting. The main difference is that, in their model, time-dependence takes the form

of a combination of Taylor and Calvo pricing.5 Otherwise, their main focus is on other types

of selection effects under state-dependent pricing. In contrast, we cover the whole space of

time-dependent pricing models. Another related paper is Yao (2015), who uses numerical

examples to show how differences in the distribution of price durations affect the dynamics of

the economy in response to shocks. Finally, Vavra (2010) explores the empirical distribution

of price durations estimated from micro-data for the U.S. to study monetary non-neutrality.

We proceed as follows: In Section 2 we lay out the model, which is a continuous time,

perfect foresight version of the baseline New Keynesian model, with general distribution of

price durations. Section 3 introduces our concept of selection in time-dependent price-setting

models, and states the key propositions linking selection to the real effects of a monetary

shock. Section 4 shows how selection relates to various ways of summarizing the distribution

of price spells, that is, it states and discusses results 1) to 4) listed above. In Section 5 we

present the numerical results for cases allowing for strategic interactions in price setting.

Section 6 analyzes the implications of selection for social and private efficiency, and the last

section concludes.

5In their model, Taylor pricing arises as a limiting case in which firms have infinitely many products, and
the payment of a menu cost allows them to change all prices at once. In this context, a law of large numbers
leads firms to reprice at fixed intervals (for small monetary shocks). They expand the space of models they
consider to include Calvo pricing, by allowing for random opportunities to change prices at no cost.
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2 Model

There is a representative household that derives utility from a continuum of differentiated

consumption goods aggregated in a Dixit-Stiglitz composite and supplies a continuum of

firm-specific varieties of labor. Labor is hired by monopolistically competitive firms that

produce the goods. The household owns these firms, so it receives back whatever profits

they generate. Firms hire labor in competitive markets. We assume a cashless economy

with a risk-free nominal bond in zero net supply as in Woodford (2003) and abstract from

fiscal policy.

In our analysis, we rely on a first-order approximation of the model around a zero inflation

steady state. This allows us to resort to the certainty equivalence principle and focus on

the dynamic response of the economy to one-time, zero probability shocks in a world of

otherwise perfect foresight. We use a continuous-time formulation since it yields tractable

closed-form solutions, although none of the key results or intuitions rely on the continuous-

time assumption. The representative household maximizes:

Et

[∫ ∞
0

e−ρs

(
C (t+ s)1−σ − 1

1− σ
−
∫ 1

0

λ
Lj (t+ s)1+ 1

ψ

1 + 1
ψ

dj

)
ds

]

s.t. Ḃ (t+ s) = i (t+ s)B (t+ s)+

∫ 1

0

Wj (t+ s)Lj (t+ s) dj−P (t+ s)C (t+ s)+T (t+ s) ,

and subject to a no-Ponzi condition. Here ρ is the discount rate, σ is the inverse of the

elasticity of intertemporal substitution, ψ is the Frisch elasticity of labor supply, C (s) is

consumption of the composite good, Lj (s) is the quantity of labor supplied for the production

of variety j, Wj (s) is the nominal wage for labor of variety j, T (s) are firms’ flow profits

received by the consumer, B (s) denotes bond holdings that accrue a nominal interest at

rate i (s), and P (s) is a price index to be defined below. Et is the expectations operator

with respect to information available at time t. Given the assumption of perfect foresight

except for a one-time, zero probability shock, we can ignore the expectations operator for

the solution of the household problem.

The composite consumption good is given by:

C (t) ≡
[∫ 1

0

Cj (t)
ε−1
ε dj

] ε
ε−1

,
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where Cj (t) is consumption of the variety of the good produced by firm j. The elasticity

of substitution between varieties is ε > 1. Denoting by Pj (t) the price charged by firm j at

time t, the corresponding consumption price index is:

P (t) =

[∫ 1

0

Pj (t)1−ε dj

] 1
1−ε

.

The first-order conditions for the representative consumer’s optimization problem are:

Wj (t)

P (t)
= λC (t)σ Lj (t)

1
ψ , j ∈ [0, 1] , (1)

Ċ (t)

C (t)
= σ−1

[
i (t)− Ṗ (t)

P (t)
− ρ

]
,

Cj (t) = C (t)

(
Pj (t)

P (t)

)−ε
, j ∈ [0, 1] . (2)

Firms transform labor into output one for one. They sell their products at a nominal price

that they only change infrequently. In the meantime, they commit to producing as much as

necessary to satisfy the demand for their output given their chosen price. The timing of those

occasional price changes depends probabilistically on the time elapsed since the firm’s last

price change – i.e., price setting is time dependent. Particular examples of time-dependent

models include Taylor (1979) and Calvo (1983). We follow Section 3 in Dotsey, King, and

Wolman (1997) and consider a general time-dependent setting. We denote the probability of

a new price surviving for a period of length less than s by a generic cumulative distribution

function G (s). At this point, the only restriction we impose is that G (s) depends only on

the time elapsed since the price was last reset but not on the particular date in which it was

reset. Note that G being a c.d.f. implies that lims→∞G (s) = 1, so that all price spells come

to an end with probability one. Certain results require additional restrictions on G that we

will introduce as needed.
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A firm that resets its price at time t chooses the price Xj (t) to solve:

max
Xj(t)

Et

[∫ ∞
0

e−ρs (1−G (s)) [Xj (t)Yj (t+ s)−Wj (t+ s)Nj (t+ s)] ds

]
s.t. Yj (t+ s) = Nj (t+ s) , (3)

Yj (t+ s) =

(
Xj (t)

P (t+ s)

)−ε
Y (t+ s) ,

where Nj (t+ s) is the amount of labor demanded by the firm, and where the demand

function already takes into account that goods market clearing implies Cj (t) = Yj (t). The

first-order condition yields:

Xj (t) = Et

[
ε

ε− 1

∫∞
0
e−ρs (1−G (s))P (t+ s)ε Y (t+ s)Wj (t+ s) ds∫∞

0
e−ρs (1−G (s))P (t+ s)ε Y (t+ s) ds

]
.

As is usual in the literature, we focus on the symmetric equilibrium in which all adjusting

firms choose the same nominal price. This allows us to drop the j subscripts and denote

the price set by any firm at time t as X (t). Moreover, we assume uniform staggering of

pricing decisions, meaning that: 1) conditional on the time since the last price adjustment,

the event that one firm changes price is independent of any other firm changing price, and

2) the cross-sectional distribution of survival times is stationary. Thus, the aggregate price

index satisfies:

P (t) =

[∫ t

−∞
Λ (1−G (t− v))X (v)1−ε dv

] 1
1−ε

,

where Λdt ≡
[∫∞

0
(1−G (s)) ds

]−1
dt is the constant “fraction” of prices that are changed

over an infinitesimally small interval dt. We refer to Λ as the average frequency of price

changes in the economy. Using integration by parts, it is straightforward to show that:

Λ−1 =

∫ ∞
0

sdG (s) ,

which is the average duration of price spells.

The model is closed by a monetary policy specification that ensures existence and unique-

ness of a rational expectations equilibrium. Following standard practice in the price-setting

literature (e.g. Mankiw and Reis, 2002), we assume an exogenous path for nominal aggregate
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demand, M (t) = P (t)Y (t), which we leave unspecified at this point.

We log-linearize the model around a zero-inflation steady state. In this log-linear envi-

ronment, firms that change prices at time t set (lowercase variables denote log-deviations

from the steady state):

x (t) = xj (t) = Et

[∫∞
0
e−ρs (1−G (s))wj (t+ s) ds∫∞

0
e−ρs (1−G (s)) ds

]
. (4)

Log-linearizing the labor supply condition in equation (1), and combining the log-linear

versions of the production function (equation 3), the household’s demand for varieties (equa-

tion 2), and the market clearing condition Cj (t) = Yj (t) yields the following equilibrium

expression for nominal wages:

wj (t+ s) = p (t+ s) +
(
σ + ψ−1

)
y (t+ s)− εψ−1 (x (t)− p (t+ s)) .

Note that wj (t+ s) is the same for all firms j that change price at the same time, so that,

consistent with the symmetry assumption above, xj (t) is also the same for all such firms.

We can also use m (t+ s) = p (t+ s)+y (t+ s) to substitute out y (t+ s), rearrange slightly,

and obtain:

wj (t+ s) =
(
1 + εψ−1 − σ − ψ−1

)
p (t+ s) +

(
σ + ψ−1

)
m (t+ s)− εψ−1x (t) .

Substituting the expression above in the first-order condition for the firm’s problem (equa-

tion 4) and rearranging yields:

x (t) = Et

[∫∞
0
e−ρs (1−G (s)) [αm (t+ s) + (1− α) p (t+ s)] ds∫∞

0
e−ρs (1−G (s)) ds

]
, (5)

where α = σ+ψ−1

1+εψ−1 .

According to equation (5), the model implies strategic neutrality in price setting if α = 1.

This means that the nominal marginal cost for a given firm and, therefore, its desired price,

only depends on the exogenous process m (t+ s) – and not on decisions made by other

firms. Strategic neutrality arises under specific constellations of primitive parameters such

as, for example, σ = 1 and ψ → ∞ (log utility in consumption and linear disutility of
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labor). Given our framework, a necessary and sufficient condition for strategic neutrality is

σ + 1/ψ = 1 + ε/ψ. More generally, pricing decisions will be either strategic substitutes or

strategic complements. If α < 1, there is strategic complementarity in price setting, meaning

that firms will choose prices close to what they expect the aggregate price level to be. With

α > 1 pricing decisions are strategic substitutes.

Finally, the aggregate price level is given by:

p (t) =

∫ t

−∞
Λ (1−G (t− v))x (v) dv. (6)

2.1 Monetary shocks

The economy starts with a constant level of nominal aggregate demand M old, with associated

pricing decisions Xold, the aggregate price level P old, and constant output Y old. We analyze

the impact of a one-time, unforeseen shock to nominal aggregate demand. The shock hits the

economy at t = t0, yielding thereafter a new path for nominal aggregate demand Mnew (t),

and associated paths for pricing decisions, aggregate price level, and output – respectively,

Xnew (t), P new (t), and Y new (t). The assumptions that price setting is purely time dependent

and that price changes are uniformly staggered over time allow us to set, for notational

convenience, t0 = 0 without loss of generality.

In log-linear terms, the ex-post path of nominal income is:

m (t) =

 mold, if t < 0,

mnew (t) , if t ≥ 0.
(7)

The assumption of a one-time unforeseen shock implies that Et [M (t+ s)] = M old if

t < 0 and Et [M (t+ s)] = Mnew (t) if t ≥ 0, and analogously for X (t), P (t), and Y (t).

Thus, from this point onward, we drop the expectations operator and use the superscripts

“new” and “old” instead.
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3 Selection and monetary non-neutrality

In this section we introduce a concept of selection appropriate for time-dependent models.

We show that, for a given frequency of price changes, this type of selection contains the same

information as the distribution of price durations, so that it provides a complete description

of nominal rigidities in the model. Finally, we show how selection affects monetary non-

neutrality, with lower selection for prices set before the shock being associated with higher

real effects of nominal shocks.

3.1 Selection

In statistics, there is a selection bias if a sample is not a random draw from the population.

In that case, sample moments provide biased estimates of population moments. By analogy,

the prices being reset at a given point in time are a sample of the population encompassing

all existing prices. As a measure of selection, we focus on the fraction of prices set before

the shock (“old prices”) being reset at t, as compared to the corresponding fraction of old

prices in the population still in place at t.

Because the distribution of the duration of price spells, G, is time-invariant, at any time

t ≥ 0, the fraction of old prices among changing prices is equal to 1 − G (t) – which is the

probability that a price survives for t or longer. In turn, 1−ω (t) ≡ 1−
∫ t

0
Λ (1−G (s)) ds is

the fraction of old prices in the population at time t. In this context, we say there is positive

selection for old prices if 1−G (t) > 1−ω (t) and negative selection otherwise. This suggests

a natural measure of selection for old prices at each point in time after a shock.

Definition 1. For all t such that ω (t) < 1, selection (at t), denoted by µ (t), is defined as

µ (t) ≡ 1−G (t)

1− ω (t)
− 1,

and for t such that ω (t) = 1,

µ (t) = 0.

The extension of the definition for the cases in which ω (t) = 1 is natural, since with

ω (t) = 1 all adjusting prices as well as all prices in the population have been set after the
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shock (that is, they are all “new”). Hence, the “sample” of prices that can adjust at any

point in time has the same composition as the population and there is no selection.

The state of the economy at any t ≥ 0 is a function of the history of selection for old

prices starting at the time of the shock. To capture this history, we also employ a related

measure, which emphasizes not selection at a given point in time, but cumulative selection

since the shock hit:

Definition 2. Cumulative selection (at t), denoted by Ξ (t), is defined as

Ξ (t) ≡
∫ t

0

µ (s) ds.

We refer loosely to selection for old prices in economy A being stronger than in economy

B if either µA (t) > µB (t) ∀t and/or ΞA (t) > ΞB (t) ∀t. It is easy to see that the first

ordering implies the second, but that the converse is not necessarily true.

We now proceed to show how the population of old prices at any point in time is deter-

mined by the history of selection up to that point. After the monetary shock hits, the pool

of new prices ω (t) increases as firms a) have the opportunity to change prices (this is given

by the frequency of price changes, Λ) and b) are doing so for the first time after the shock

(this applies to a fraction 1−G (t) of price changers). Therefore:

∂ω (t)

∂t
= Λ (1−G (t)) . (8)

Solving the differential equation (8) with ω (0) = 0 as a boundary condition and using

the definitions above yields the following:6

1− ω (t) = e−Λt−Λ
∫ t
0 µ(v)dv = e−Λt−ΛΞ(t). (9)

Equation (9) suggests that, given Λ, G can be obtained from µ (and vice versa). As the

following Lemma shows, this is indeed the case:7

Lemma 1. Let M be the set of all functions µ : [0,∞) → R that can be constructed

using Definition 1. Let GΛ be the set of all functions G : [0,∞) → [0, 1] satisfying

6See Lemma A.1 in Online Appendix for a formal statement and proof.
7The proofs to all Lemmas and Propositions are in Section 7 of the Online Appendix.

11



∫∞
0

(1−G (s)) ds = Λ−1. Then, there is a mapping f :M→ GΛ that allows us to recover G

from µ.

The last result implies that, given the frequency of price changes Λ, µ and G are equally

valid primitives for the general class of time-dependent pricing models that we consider.

3.2 Monetary non-neutrality

We now examine the link between selection and monetary non-neutrality. We focus on the

case with strategic neutrality in price setting, since it allows us to isolate the role of selection

from the well-known effects of interactions between firms’ pricing decisions. Using numerical

simulations, in Section 5 we examine whether our main results survive the presence of pricing

interactions.

The effects of the shock on real output are given by:

ynew (t)− yold. (10)

We measure the degree of monetary non-neutrality by the discounted cumulative effect of

the shock on output. More specifically, our measure of non-neutrality is given by:

Γ =

∫ ∞
0

e−ρt
[
ynew (t)− yold

]
dt.

In Section 6.2 we show that, up to a first-order approximation, this measure is proportional

to the ex-post utility impact generated by the monetary shock. More broadly, it is a useful

summary statistic of the (positive) effects of monetary shocks on the real economy, which we

then use to assess the implications of selection.8 We refer to Γ generically as the real effects

of the monetary shock.

3.2.1 Level shocks

We start by analyzing the commonly used case where, following the shock, the level of

nominal income changes once and for all, that is, mnew (t) = mnew = mold + ∆m for some

8This view is shared by other papers in the literature, as evidenced by the widespread usage of that
measure to this effect (see, for example, Alvarez, F. and F. Lippi 2014, Alvarez, F., F. Lippi, and L. Paciello
2012, Vavra 2010, among others).
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constant ∆m. Apart from being a common benchmark, this case is interesting because the

link between selection and the real effects of monetary shocks is particularly transparent.

From (5) it follows immediately that:

xold = mold, xnew = mnew.

Taking into account the different price-setting decisions made before and after t = 0, we

can then write the evolution of the aggregate price level for t ≥ 0 as:

pnew (t) = p (t) = ω (t)mnew + (1− ω (t))mold, (11)

where ω (t) is the fraction of firms with new prices in the population (i.e., who last set their

prices after the shock).

The effects of the shock on real output are thus given by:

ynew (t)− yold = mnew − pnew (t)−
(
mold − pold

)
= ∆m (1− ω (t)) .

In words, the output effect at t is proportional to the size of the shock ∆m and to the fraction

of firms with old prices at t, 1− ω (t). Thus, for a given sized shock, the real effects at t are

larger if the pool of old prices is larger.

Using (10), we can write the real effects of the shock as:

Γ = ∆m

∫ ∞
0

e−ρt (1− ω (t)) dt. (12)

The real effects are increasing in the integral over time of the fraction of old prices in the

population. The longer the fraction of old prices in the population takes to shrink to zero

after the shock, the larger are its real effects. It follows from (9) that:

Γ

∆m
=

∫ ∞
0

e−ρt (1− ω (t)) dt =

∫ ∞
0

e−(ρ+Λ)t−Λ
∫ t
0 µ(v)dvdt =

∫ ∞
0

e−(ρ+Λ)t−ΛΞ(t)dt. (13)

We can thus derive the following immediate implications, summarized in the lemma below:

Lemma 2. Given Λ and strategic neutrality (α = 1), the effects of a shock to the level of
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nominal income (m1 = m0 + ∆m) are larger if either

1) selection, µ (t), is smaller for all t, or

2) cumulative selection, Ξ (t), is smaller for all t.

3.2.2 General shocks

One difficulty in establishing analytical results for general shocks is that, differently from

the simple case with a level shock, the cross-sectional distribution of prices is, in general,

not concentrated on only two values – one for old prices and one for new prices. In spite

of that, in the benchmark case of strategic neutrality, we are able to handle more general

shocks thanks to the following proposition:9

Proposition 1. Consider an economy characterized by a distribution of price spells G and

strategic neutrality (α = 1). The real effects of a monetary shock of the general form con-

sidered in equation (7) are

Γ =

∫ ∞
0

e−ρt (1− ω (t))
(
mnew (t)−mold

)
dt.

This proposition holds in spite of the fact that, in general, ynew (t)− yold is not equal to

(1− ω (t))
(
mnew (t)−mold

)
. The fact that it holds is a consequence of optimality of firms’

price-setting decisions. Given strategic neutrality in price-setting, a firm j choosing its price

after the shock would like to set xj (t) = mnew (t+ s) for all s, but this is impossible if

mnew (t+ s) varies over time. As a “compromise”, it optimally sets xj (t) to be equal to a

weighted average of mnew (t+ s), with weights given by the probability with which it expects

the price to remain in place at each date t+s. For some period of time, xj (t) will remain below

mnew (t+ s), and for some other period it will remain above. Over time these differences,

as weighted by the probabilities of the price remaining in place, cancel out exactly, so that

overall the real effects are the same as if the firm was able to set pj (t+ s) = mnew (t+ s)

for all s ≥ 0.

In the Online Appendix, we show that Proposition 1 can be alternatively formulated as

stating that the real effects of a monetary shock in a sticky-price model are identical to those

effects in a sticky-information model, so long as the distribution of price spells in the former

9Since we rely on a log-linear approximation to the model around a zero inflation steady state, these
more general shocks should be such that the economy remains near that steady state.
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is identical to the distribution of price plans in the latter. Thus all the analytical results in

this paper translate to an equally large class of models with sticky information, as in Mankiw

and Reis (2002).10

As in Section 3, we can write the result in Proposition 1 in terms of cumulative selection:

Γ =

∫ ∞
0

e−(ρ+Λ)t−ΛΞ(t)
(
mnew (t)−mold

)
dt. (14)

From equation (14), it is evident that, given Λ, so long as mnew (t) ≥ mold for all t (or

vice-versa), monetary shocks have smaller real effects in economies with larger cumulative

selection Ξ (t) everywhere. This last result implies a generalization of Lemma 2:

Proposition 2. Consider a shock to nominal aggregate demand characterized by mnew (t) ≥
mold for all t.

Consider the impact of the shock in two economies, A and B, characterized by distribu-

tions of price durations GA (t) and GB (t), with
∫∞

0
(1−GA (t)) dt =

∫∞
0

(1−GB (t)) dt =

Λ−1. Then, ΓA < ΓB if either

1) µA (t) ≥ µB (t) ∀t or,

2) ΞA (t) ≥ ΞB (t) ∀t.

The restriction that mnew (t) > mold (“monotonic shocks”) is important. In particular, if

shocks are non-monotonic (for example, if they lead nominal income to oscillate around its

previous level), lower selection can lead to lower non-neutrality.11

Equation (14) also provides some insight into how the dynamic properties of monetary

shocks may interact with selection to give rise to smaller or larger real effects. In particular,

if we restrict our attention to mean-reverting shocks for which
∫∞

0

(
mnew (t)−mold

)
dt <∞,

we can write

Γ =

∫ ∞
0

e−(ρ+Λ)t−ΛΞ(t)dt

∫ ∞
0

(
mnew (t)−mold

)
dt

+cov
(
e−(ρ+Λ)t−ΛΞ(t),mnew (t)−mold

)
,

where cov
(
e−(ρ+Λ)t−ΛΞ(t),mnew (t)−mold

)
denotes the covariance over time between the

10We first proved this “equivalence” between sticky-price and sticky-information models in Carvalho and
Schwartzman (2008), Proposition 1.

11We thank an anonymous referee for calling our attention to this case.
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shock mnew (t) − mold and the selection term e−(ρ+Λ)t−ΛΞ(t). The first term contains the

original intuition: The real effects of shocks are larger if selection is smaller (lower Ξ (t)) and

if the shock itself is larger on average (larger
∫∞

0

(
mnew (t)−mold

)
dt). The covariance term

states that, additionally, the real effects of a nominal shock are larger if mnew (t) −mold is

relatively large when cumulative selection, Ξ (t), is small. Since (ρ+ Λ) t+ ΛΞ (t) increases

with t, this implies that, for a given average size
∫∞

0

(
mnew (t)−mold

)
dt, shocks that mean

revert faster (i.e., that are more “front-loaded”) will feature larger real effects than more

persistent shocks (which are relatively more “back loaded”).

4 Selection and the distribution of price durations

We now turn to results concerning how selection is related to different properties of the

distribution of price spells. We start by discussing the benchmark cases of Taylor and Calvo

pricing. We then revisit two topics that have been the subject of previous work: The slope

of hazard functions and ex-ante heterogeneity in price setting. Finally, we show that there

is a link between selection and the variance of price durations, and we explore conditions

under which this result allows us to derive a simple sufficient statistic for the real effects of

monetary policy shocks.

4.1 Benchmark cases: Taylor and Calvo pricing

We start with a discussion of the two most widely used time-dependent models, which are

the ones proposed by Taylor (1979) and Calvo (1983). We show that these cases are polar

opposites insofar as selection is concerned. In particular, Taylor pricing implies maximal

selection and Calvo pricing implies no selection. Thus, the real effects of monetary shocks

will be minimal under Taylor and larger in Calvo than in any model with non-negative

selection.

4.1.1 Taylor pricing

Firms set prices for a fixed period of time (given by Λ−1). Thus, the distribution of price

durations is degenerate at Λ−1. This specification has been influential in the sticky-price

literature, and, apart from Taylor (1979), it has been used in prominent papers such as
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Chari, Kehoe, and McGrattan (2000).

For a given frequency of price changes Λ, we can define Taylor pricing in terms of our

notation as:

GTaylor (t) =

 0 if t < Λ−1,

1 otherwise.

Under Taylor pricing, selection at time t is:

µTaylor (t) =


1

1−Λt
− 1 if t < Λ−1,

0 otherwise.
(15)

Selection is equal to zero for t ≥ Λ−1 since from that point onward the pool of old prices

is thoroughly depleted, so that 1 − ωTaylor (t) = 0. Selection is positive elsewhere. Within

the range where selection is positive, it is also maximal, since all changing prices were set

before the shock. We formalize the point in the following Lemma:

Lemma 3. Consider an arbitrary time-dependent economy with distribution of price dura-

tions characterized by G (t) and with average frequency of price changes Λ. Let µ (t) and

Ξ (t) be, respectively, the corresponding selection and cumulative selection functions. Let

µTaylor (t) and ΞTaylor (t) be, respectively, the selection and cumulative selection functions for

a Taylor economy with average frequency of price changes Λ. Then µTaylor (t) ≥ µ (t) for all

t < Λ−1 and ΞTaylor (t) ≥ Ξ (t) for all t.

Given Proposition 2, it follows immediately that, for a given Λ, Taylor pricing implies

the smallest real effects among all time-dependent pricing models.12

4.1.2 Calvo pricing

A further leading example of time-dependent pricing used in the literature is the one proposed

by Calvo (1983), which is the key building block of the canonical New Keynesian model. In

this setting, the probability of a given firm changing its price over any given period of time

does not depend on the time elapsed since it last adjusted. This implies an exponential

decay of the survival probability of a price.

12Vavra (2010) provides a different proof of the fact that the real effects under Taylor are minimal.
Without linking it to selection, we first proved that result in Carvalho and Schwartzman (2008).
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In terms of our notation, we can denote the cumulative distribution of price durations

under Calvo as:

GCalvo (t) = 1− e−Λt.

It is easy to verify that:

ωCalvo (t) = 1− e−Λt,

so that selection is given by:

µCalvo (t) =
e−Λt

e−Λt
− 1 = 0.

Thus, under Calvo pricing there is no selection. In other words, price changing firms are a

representative draw from the population.

4.2 Hazard functions

The empirical literature on price-setting has devoted substantial effort to estimating the

shape of the hazard function of price adjustment.13 The motivation is that, at least since

the work of Dotsey, King, and Wolman (1997, 1999) and Wolman (1999), it has been clear

that the shape of the hazard function matters for the real effects of monetary shocks.

Assuming G is differentiable, the hazard function can be defined as:

h (s) =
∂G(s)
∂t

1−G (s)
.

We start by showing that the concept of selection and hazard functions are closely related.

Specifically, the following holds:

Lemma 4. Let µ and h be, respectively, the selection function and hazard function associated

with a differentiable c.d.f. G. Let t1 ∈ [0,∞) be the smallest value of t such that ω (t1) = 1.

Then, for t < t1,

µ (t) =

∫ t1

t

h (s)

Λ
Ψt (s) ds− 1, (16)

where

Ψt (s) ≡ 1−G (s)∫ t1
t

(1−G (v)) dv

13For a recent review of this literature, see Klenow and Malin (2010, section 5.3).
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is the density of prices of age s among all prices older than t.

Thus, up to a constant, selection at t is proportional to a weighted average of the hazard

function evaluated at t and later. The intuition is as follows: Selection at t is tied to the

probability of prices set before time 0 changing at t. Given stationarity, this is equivalent to

the probability of prices changing at age t or afterwards. Since the hazard function is the

continuous-time analogue of the probability of a price changing at a given age, conditional

on it having survived up to that age, selection at date t can be obtained from integrating the

hazard function from t onwards using Ψt (s) as weights. The normalization by the average

frequency of price changes Λ reflects the fact that, unlike the hazard function, selection does

not depend on the average frequency of price changes.

From (16), we can show that if a hazard function is strictly increasing, then there is

positive selection at all t:

Lemma 5. For a given distribution of price durations G (t), consider the corresponding

hazard h (t) = ∂G(t)
∂t

/ (1−G (t)) and selection µ (t) = 1−G(t)
1−ω(t)

− 1 functions. If h (t′) > h (t)

for all t′ > t, then µ (t) > 0 for all t > 0.

The result is intuitive. An increasing hazard function implies positive selection, since the

probability of a price change increases with the age of the price. An immediate implication

is that any economy featuring an increasing hazard of price adjustment will feature higher

selection than an economy featuring Calvo pricing. The Lemma thus verifies the intuition

spelled out by Wolman (1999) for the reason why, as compared to Calvo pricing, increasing

hazard functions are associated with smaller real effects of monetary shocks.

The general intuition behind Lemma 5 extends to the comparison of two hazard functions.

In this case, the c.d.f.’s can be ranked in terms of the associated cumulative selection. Given

two economies, one with a more increasing hazard function than the other, the economy with

the more increasing hazard function features higher cumulative selection and lower monetary

non-neutrality:14

Proposition 3. For two economies A and B with the same average frequency of price

changes (ΛA = ΛB) and for which the relevant moments and derivatives are defined, ΞA(t) <

ΞB(t) ∀t if either

14The result is actually stronger than this, as all that is required is a single-crossing condition on the two
hazards (see the proof in the Online Appendix).
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1) there is a single crossing at some t∗ so that hA (t) ≥ hB (t) for t ≤ t∗ and hA (t) < hB (t)

for t > t∗,or

2) ∂hA(t)
∂t

< ∂hB(t)
∂t
∀t.

Given Proposition 3, it follows immediately from Proposition 2 that monetary shocks are

associated with smaller real effects in economies in which the hazard function increases more

quickly.

4.3 Heterogeneity in price stickiness

In this section we show that selection effects also shed light on, and allow us to generalize

the findings in Carvalho (2006), that a one-sector model calibrated to the average frequency

of price changes is likely to understate the real effects of nominal shocks relative to a model

with cross-sectoral heterogeneity in price stickiness. These findings are of particular impor-

tance because, as documented by Bils and Klenow (2004) and others, there is substantial

heterogeneity in the frequency of price changes.

Consider a heterogeneous sticky-price economy with K sectors indexed by k, each with a

measure Φk of firms and sector-specific distribution of price-durationsGk (t).15 For notational

convenience, we use E [·] to denote cross-sectoral weighted averages:

E [xk] ≡
K∑
k=1

Φkxk. (17)

The price level in the heterogeneous economy is:

p (t) = E [pk (t)] ,

where pk (t) is the price level in sector k. These sectoral price levels are aggregates of past

pricing decisions:

pk (t) =

∫ t

−∞
Λk [1−Gk (t− s)]xk (s) ds,

where Λk ≡
[∫∞

0
(1−Gk (s)) ds

]−1
is the average frequency of price changes in sector k.

15For brevity, we do not specify the whole multisector model here and borrow the required log-linear
equations directly from Carvalho and Schwartzman (2008).
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Definition 1 for selection does not apply to the heterogeneous economy, but it is possible

to construct a natural extension. First, if the fraction of new prices in sector k at time t is

ωk (t), it follows that the fraction of new prices in the economy as a whole (which we denote

by ωhet (t)) is just the average of the fraction of new prices across sectors:

ωhet (t) = E [ωk (t)] .

Calculating the fraction of new prices among changing prices is slightly more involved.

Here, we have to take into account that the mass of prices changing in a given sector at any

given interval dt is given by ΦkΛkdt – the mass of firms in the sector, Φk, multiplied by the

frequency of price changes Λk and by the length of time dt. If we denote the economy-wide

fraction of new prices among changing prices at time t by Ghet (t), then:

Ghet (t) = E

[
Λk

E [Λk]
Gk (t)

]
.

We can now generalize Definition 1 to the heterogeneous economy:

Definition 3. For all t such that E [ωk (t)] < 1, selection (at t), denoted by µhet (t), is

defined as

µhet (t) ≡ 1−Ghet (t)

1− ωhet (t)
− 1. (18)

For t such that ωhet (t) = 1,

µhet (t) = 0.

Definition 2 also generalizes to the heterogeneous economy in the natural way, so that

Ξhet (t) =
∫ t

0
µhet (s) ds. Given those definitions, it is possible to extend Proposition 2 to

heterogeneous economies:

Proposition 2’. Consider the real effects of a shock to nominal aggregate demand given

by mnew (t) ≥ mold for all t in two economies, A and B, characterized by sector specific

distribution of price durations
{
GA
k (t)

}KA

k=1
and

{
GB
k (t)

}KB

k=1
and by sectoral weights

{
ΦA
k

}KA

k=1

and
{

ΦB
k

}K
k=1

. Suppose, moreover, that the cross-sectoral average of the frequencies of price

changes in both economies is the same, that is, E
[
ΛA
k

]
= E

[
ΛB
k

]
. Then, ΓA < ΓB if either

1) µhetA (t) ≥ µhetB (t) ∀t, or

2) Ξhet
A (t) ≥ Ξhet

B (t) ∀t.
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We are now ready to show the role of selection in generating the results in Carvalho (2006).

In that paper, all sectors feature Calvo pricing, with different hazards of price adjustment.

This is a particular example of economies where the relevant source of heterogeneity across

sectors in the distribution of price durations is summarized by a single sector-specific scaling

parameter. We now generalize that setting.

Specifically, let the c.d.f. of price durations in sector k be given by Gk (t) = Ḡ (Λkt),

with
∫∞

0
1− Ḡ (t) dt = 1. Note that Ḡ is a generic c.d.f. common to all sectors, but that the

average frequency of price change in sector k is equal to Λk.

Given this parameterization of the heterogeneous economy, we can compare it to a coun-

terfactual one-sector economy with c.d.f. of price durations Ḡ (E [Λk] t), defined below:

Definition 4. Consider a multisector economy characterized by sector-specific distribution

of price durations
{
Ḡ (Λkt)

}K
k=1

, where
∫∞

0
1 − Ḡ (t) dt = 1, and sectoral weights Φk. The

counterfactual one-sector economy is an economy with one sector and c.d.f. of price durations

given by Ḡ (E [Λk] t) .

The following proposition compares the cumulative selection function in both economies:

Proposition 4. Let Ξhet (t) denote cumulative selection of a multisector economy charac-

terized by the sectoral c.d.f.’s of price durations
{
Ḡ (Λkt)

}K
k=1

, where
∫∞

0
1 − Ḡ (t) dt = 1,

and sectoral weights Φk, and let Ξcount (t) denote cumulative selection of its counterfactual

one-sector economy. Then,

Ξhet (t) < Ξcount (t) ∀t. (19)

Thus, cumulative selection in the multisector economy is always smaller than in the

counterfactual one-sector economy. It follows immediately from Proposition 2’ that a shock

to nominal aggregate demand in the multisector economy has larger real effects than in the

counterfactual one-sector economy.

The intuition for Proposition 4 is easiest to understand in the case considered by Carvalho

(2006), where the hazard of price adjustment is constant within each sector, as in Calvo

(1983). In this economy, Ḡ (t) = 1− e−t, so that:

Gk (t) = 1− e−Λkt, ωk (t) = 1− e−Λkt. (20)

Each sector features Calvo pricing so that within each sector there is no selection. This,

however, is not true in the aggregate. We can check that selection in the heterogeneous
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economy is negative:

µhet (t) =

E[Λke−Λkt]
E[Λk]

E [e−Λkt]
− 1 =

cov (Λk, 1− ωk (t))

E [Λk]E [1− ωk (t)]
< 0, (21)

where cov denotes the cross-sectional covariance given sectoral weights Φk.

The covariance term in equation (21) neatly summarizes the intuition behind the main

result in this section. In the heterogeneous economy, price changes are disproportionately

selected from sectors with high frequency of price changes (high Λk). However, exactly

because these sectors have a high frequency of price changes, they have a smaller fraction of

old prices (low 1 − ωk (t)). Therefore, cov (Λk, 1− ωk (t)) < 0 and selection is negative. In

contrast, the counterfactual one-sector economy is just a Calvo economy, so that selection

is zero. Thus, the heterogeneous economy features lower selection than its counterfactual

one-sector counterpart, and higher real effects of monetary shocks.

4.4 The variance of price durations

For economists trying to calibrate time-dependent sticky-price models, the results presented

so far may seem a bit discouraging. They imply that the average frequency of price changes

is far from a being a sufficient statistic for the real effects of nominal shocks. Rather, they

suggest that one cannot do without the whole distribution of price durations, since it is the

shape of that distribution that determines selection.16

Our next results show that it may not be necessary to account for the entire distribution

of price durations. They make the case that, for a given frequency of price changes, the

variance of price durations may be a good scalar metric of selection effects and, in some

particular cases, a sufficient statistic.

As a first step, we compare selection among two distributions of price durations where

one is a mean preserving spread of the other. Proposition 5 states the result:

Proposition 5. Consider two economies, A and B, characterized by the distributions of

price spells GA and GB, where GA is obtained from a mean preserving spread of GB. Then,

16For a model calibrated with microeconomic estimates of the full distribution of the duration of price
spells, see Vavra (2010). As shown in that paper, an alternative to our approach is to consider the distribution
of remaining durations of prices in place. Given stationarity, one is just a transformation of the other.
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ΞA (t) ≤ ΞB (t) ∀t. Conversely, if ΞA (t) ≤ ΞB (t) and ΛA = ΛB, then GA is a mean

preserving spread of GB.

Thus, if we restrict ourselves to comparing economies that can be ordered in terms of

cumulative selection, the variance of price durations is a sufficient statistic for that ordering.

Given that restriction, in the context of Proposition 5, if the variance of price durations in

economy A is higher than in economy B, then, selection is lower in A than in B.

For a given frequency of price changes, the variance of price durations is, furthermore,

a sufficient statistic for the real effects of nominal disturbances in the case of shocks to the

level of nominal income discussed in Section 3.2.1:17

Proposition 6. Suppose an economy is characterized by a distribution of price spells G with

finite mean and variance given by Λ−1 and σ2. The real effects of a permanent level shock

to nominal aggregate demand of size ∆m satisfy

lim
ρ→0

Γ

∆m
=

1

2

(
Λ−1 + Λσ2

)
. (22)

Note that, unlike Proposition 5, Proposition 6 does not require the economies under

comparison to be ordered by degree of selection. In that sense, it applies more broadly than

previous results that hinged on an ordering by cumulative selection.18

Furthermore, the Proposition presents a closed-form expression for the real effects of the

monetary shock. As an example, it allows us to easily calculate the real effects of a level

shock under Taylor and Calvo pricing. They are given by Λ−1

2
∆m for Taylor and Λ−1∆m for

Calvo. Hence, the real effects of a level shock are twice as large under Calvo pricing than

under Taylor pricing.

The variance is not a sufficient statistic for more complicated shocks. Proposition 6 is a

special case of Proposition 6’, which applies to any shock whose impulse response function

can be well approximated by a polynomial function.

Proposition 6’. Suppose an economy is characterized by a distribution of price spells G

with finite moments of order between 1 and K + 1. Let the random variable τ be the realized

duration of price spells. The real effects of a monetary shock characterized by mnew(t) −

17This is not the case more generally because orderings by variance do not imply an ordering by mean
preserving spreads.

18We first derived this result in Carvalho and Schwartzman (2008), Proposition 3.
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mold =
∑K

k=1 akt
k−1 are:

lim
ρ→0

Γ =
K∑
k=1

ak
k (k + 1)

E
[
τ k+1

]
E [τ ]

.

Proposition 6’ states that the number of (uncentered) moments necessary to characterize

the real effects of a monetary shock increases with the number of polynomial terms necessary

to approximate the new trajectory of nominal income.19

For example, consider the effects of permanent shocks to the growth rate of nominal

aggregate demand. Such shocks are relevant for periods of disinflation such as the early 80s

in the United States. The growth rate shock is:20

m (t) =

 mold, t < 0,

mold + bt, t ≥ 0.
(23)

In that case, the real effects of the shock are given by:

lim
ρ→0

Γ =
b

6

(
Λ−2 + 3σ2 + Λησ3

)
,

where σ2 is the variance of price durations and η is the skewness. It is, again, straightforward

to calculate the real effects of this kind of shock under Taylor and Calvo pricing. They are,

respectively, Λ−1

6
b and Λ−1b, so that the real effects of the shock are six times as large under

Calvo than under Taylor.

5 Interactions in pricing decisions

The analytical results presented above hold under strategic neutrality in price setting. In

this section we perform some numerical exercises to assess whether our main results extend

19Shocks approximated by polynomials of order K > 2 may seem unrealistic, since they would imply a
divergent inflation path. However, the polynomial only needs to be a good approximation to the shock up to
some distant enough time T for Proposition 6’ to be useful as a means of obtaining a good approximation.
See Section 2 in the Online Appendix for a formal discussion.

20We first derived this result in Carvalho and Schwartzman (2008), Proposition 5. While this shock
involves a change in steady-state inflation, Carvalho (2008, Appendix A.6) shows numerically that, as long
as the discount rate (ρ) is not strictly equal to zero, this result is a good approximation for temporary but
highly persistent shocks to the growth rate of nominal income, so that inflation converges slowly back to
zero.
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to more general cases.

We consider the real effects of a shock across different sticky-price economies indexed by

T and characterized by the following family of survival functions:

1−GT (t) =

 1− e−θt if t < T,

0 if t ≥ T,
(24)

with θ such that: ∫ ∞
0

(
1−GT (t)

)
dt = D for all T . (25)

That is, for different values of T , we adjust θ to ensure that the average duration of price

spells equals D. We take the unit of time to be a quarter and set D = 2, so that the average

price-spell lasts 2 quarters in all economies.

This family includes the two leading cases of constant duration (Taylor, 1979) and con-

stant hazard (Calvo, 1983). The first obtains if T = 2 and θ = 0. Calvo pricing obtains with

T →∞ and θ → 1
2
.

For any T ′′ > T ′, it is easy to check that the survival function parameterized by T ′′

is a mean preserving spread of the survival function parameterized by T ′.21 Thus, from

Proposition 5 it follows that, as T increases, cumulative selection decreases.

To perform the simulations, we consider the discrete-time analogue of the model in Section

2. The discrete-time analogue of the family of survival functions described in equations (24)

and (25) is:

1−GT
t =

 θt if t < T,

0 if t ≥ T.

with θ such that:
∞∑
t=0

(1−Gt) dt = 2 for all T .

The reset price chosen by all firms adjusting in period t is:

xt =
∑

(1−Gt) [αmt + (1− α)pt] , (26)

21In particular, it is straightforward to verify that for any T ′′ and T ′ with T ′′ > T ′,
∫ t

0
GT

′′
(s) ds ≥∫ t

0
GT

′
(s) ds for all t.
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where α determines whether pricing decisions are strategic complements or strategic substi-

tutes. In our experiments we compare results with α = 1 (strategic neutrality), α = 1/3

(strategic complementarity), and α = 3 (strategic substitutability).22

In order to perform the numerical exercises, we also need to parameterize the shock

process. We follow Mankiw and Reis (2002) and consider a process that is mean reverting

in the growth rate of nominal aggregate demand:

∆mt = 0.5∆mt−1 + εt. (27)

For given T , equations (26), (27), and the discrete-time analogue of the aggregate price-level

equation (6) define a standard linear rational-expectations model in {pt,mt, xt}, which we

solve using Dynare.

Figure 1 shows the log cumulative real effects of monetary shocks described in equation

(27) for different levels of strategic interactions and different T ’s. As expected, the real

effects are, for a given T , largest under strategic complementarity (α = 1
3
) and smallest under

strategic substitutability (α = 3). Furthermore, for given α, they also increase noticeably as

selection decreases (T increases).

Lastly, note that moving from a model with Taylor pricing (T = 2 and θ = 0) to

one approaching a constant hazard of price adjustment (T = 20 and θ = 0.4998) implies

an increase in the real effects by a factor of approximately two under strategic neutrality

(α = 1). This is close to what is implied by the analytical result in Proposition 6, even

though the nominal income process in equation (27) does not imply instantaneous level

shifts as assumed in the proposition. With strategic complementarities, real effects increase

by a factor greater than two, whereas with strategic substitutability, they increase by a factor

smaller than two.

6 Selection and efficiency

Economies with highest selection present the lowest cumulative effect of monetary shocks.

To what extent does this translate into higher private or social efficiency? In order to be able

22Recall that α = σ+ψ−1

1+θψ−1 . The parametrization with strategic complementarities obtains if, for example,
σ = 1, ψ = 1, and θ = 5. The parametrization with strategic substitutability obtains, for example, if σ = 3,
ψ →∞, and any θ.
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to analyze the impact of selection on efficiency from an ex-ante perspective, we need to allow

for the possibility that before t = 0, firms expect shocks with some probability. We focus on

cases where, before the shock, firms expect nominal income to remain constant, on average.

In particular, we assume that, conditional on a shock occurring, mnew(t) −mold = ∆m (t)

with probability 1
2

and mnew(t)−mold = −∆m (t) otherwise, so that E
[
mnew(t)−mold

]
= 0

and E
[(
mnew(t)−mold

)2
]

= (∆m(t))2. In addition, in order to obtain analytical results,

we revert to an environment with strategic neutrality in price-setting.

6.1 Private efficiency

Up to a second-order approximation, we can write the deviation of profit losses from fric-

tionless level for a given firm j at time t as

π̂j (t) = −χ (pj (t)−m (t))2 + t.i.s., (28)

where χ is a constant function of parameters and t.i.s. stands for “terms independent of

selection” (i.e., those that are out of the control of the firm).23 This follows from the usual

result that, up to second order, profit losses are well approximated by the square of the

deviation between the firm’s price and the target price that it would choose in the absence

of nominal rigidities. Due to strategic neutrality, the latter is equal to nominal income m (t).

At any time t, the fraction of firms with price x (s), s ∈ [−∞, t] is Λ (1−G (t− s)).
Hence, we can write the average deviation of profits from the steady state at a given time t,

π̂ (t), as (ignoring terms independent of selection):24

π̂ (t) = −χ
∫ t

−∞
Λ (1−G (t− s)) (x (s)−m (t))2 ds. (29)

We first focus on level shocks, as specified in Section 3.2.1. Using the fact that (see

equations (8) and (9)): ∫ 0

−∞
Λ (1−G (t− s)) ds = e−Λt−ΛΞ(t), (30)

23See the Online Appendix, Section 5.1 for details.
24Although each firm only cares about its own profits, our focus on average profits is justified given our

ex-ante perspective. In this context, we take firms as not knowing at which point in the life of their price
spell the shock will hit.
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and that, for such a shock, x (t) = mnew ∀t > 0, we find that the expected profit losses from

monetary shocks are decreasing in selection:

π̂ (t) = −χe−Λt−ΛΞ(t)∆m2. (31)

For more general shocks, the expression for average profit losses, (29), can be written as:

π̂ (t) = −χe−Λt−ΛΞ(t)∆m (t)2 − χ
(
1− e−Λt−ΛΞ(t)

)
E
[
(x (s)−m (t))2 |s ≥ 0

]
. (32)

There are now two components. The first component captures the profit losses stemming

from firms being surprised by the nominal shock and not being able to adjust prices imme-

diately in response. The second term is the average loss for firms that have changed their

prices since the shock. It represents the profit losses stemming from the fact that firms need

to keep prices constant between adjustments, and hence cannot track nominal income per-

fectly. In the previous case of a permanent shock to the level of nominal income, the second

term drops out, since constant prices set after the shock are perfectly capable of tracking

nominal income – giving rise to equation (31).

Whether selection will increase or decrease profit losses under general shocks is thus am-

biguous, since it depends on the relative size of the two components. Furthermore, selection

influences the relationship between x (s) and m (t), since firms set x (s) optimally. In numer-

ical exercises we find that, for a wide range of simple AR(1)-type shocks, maximal selection

(i.e., Taylor pricing) yields smaller profit losses than no selection (i.e., Calvo pricing). This

conforms with the intuition that, by allowing firms to better track their preferred prices,

higher selection increases private efficiency.25 However, we can also provide an example in

which profit losses under Calvo pricing are smaller than under Taylor pricing (see the Online

Appendix for details).

6.2 Social efficiency

We now turn to the relationship between selection and social efficiency. Following Benigno

and Woodford (2005), we can substitute equilibrium conditions into the household’s utility

25We thank an anonymous referee for suggesting that intuition.
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function so as to write the utility of the representative household as:

U0 =

∫ ∞
0

e−ρt

(
Y (t)1−σ − 1

1− σ
− Y (t)1+ 1

ψ

1 + 1
ψ

∫ 1

0

(
Pj (t)

P

)−(1+ 1
ψ )ε

dj

)
dt. (33)

We can then obtain a second-order approximation of the utility function of households

at t = 0:

U0 = Y 1−σ
∫ ∞

0

e−ρt
[
ayy (t)− ayyy (t)2 − a∆

∫ 1

0

(pj (t)− p (t))2 dj

]
dt,

where ay, ayy, and a∆ are constant functions of parameters, with positive sign for reasonable

parametrizations.26 To a first-order approximation, the utility function is proportional to

the cumulative real effect of the monetary shock,
∫∞

0
e−ρty (t) dt. This term is the dominant

one if we are mostly concerned with the ex-post welfare impact of (small) monetary shocks.

From an ex-ante perspective, however, the first-order term is zero in expectation.27 Hence,

we turn to an analysis of the two remaining terms: y (t)2, capturing the effect of monetary

shocks on consumption (and leisure) volatility, and
∫ 1

0
(pj (t)− p (t))2 dj, capturing the effect

of relative price distortions.

First, let us restrict our attention to level shocks. It is then straightforward to verify

that:

E0∆y (t)2 = (1− ω (t))2 ∆m2 = e−2Λt−2ΛΞ(t)∆m2.

Therefore, in that case, the ex-ante cost of monetary shocks due to consumption (and leisure)

volatility decreases with selection.

Turning to the second term, which captures price dispersion, we can show that:

∫ 1

0

(pj (t)− p (t))2 dj =

∫ t

−∞
Λ (1−G (t− s)) (x (s)− p (t))2 dj

=
(
1− e−Λt−ΛΞ(t)

)
e−Λt−ΛΞ(t) (∆m−∆p (t))2 + e−Λt−ΛΞ(t)∆p (t)2

=
(
1− e−Λt−ΛΞ(t)

)
e−Λt−ΛΞ(t)∆m2, (34)

26In particular, ay ≡ 1
ε , ayy ≡ 1

2

(
σ +

(
1 + ψ−1

)
ε−1
ε − 1

)
and a∆ ≡ 1

2

(
1 + 1

ψ

)
ε (ε− 1). Note that

ayy > 0 if σ ≥ 1, as commonly assumed.
27This follows from the assumption that positive and negative nominal income shocks average out.
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where the last equality uses the fact that ∆p (t) = e−Λt−ΛΞ(t)∆m. The impact of selection

on price distortions is thus ambiguous. On the one hand, higher selection means that prices

converge to mnew faster, so that at any point in time there are fewer “misaligned” prices.

On the other hand, since under higher selection average prices converge more rapidly, it also

means that prices that have not changed are more misaligned.

The bottom line is that the relationship between selection and welfare, which also depends

on the relative sizes of the ayy and a∆ coefficients in (33), is ambiguous. This result is not

unique to permanent level shocks. In particular, in the Online Appendix we consider the

welfare impact of mean-reverting shocks under Taylor and Calvo pricing. We find that

welfare losses due to the price dispersion component are higher under Calvo than under

Taylor pricing when shocks are relatively persistent, but those same losses become lower for

Calvo pricing for shocks that mean revert faster.

6.3 Alternative sources of fluctuations

So far we have only analyzed the implications of selection for the efficiency costs of monetary

shocks. One may alternatively be interested in knowing the implications of selection given

other kinds of shocks. This is especially interesting in the present context, since it is well

known from the optimal monetary policy literature that different shocks have different welfare

implications (see, for example, Woodford, 2003; and Adam, 2007). To highlight the role of

selection, we analyze cases in which monetary policy keeps nominal income constant in the

face of those shocks.

Insofar as firm profitability is concerned, the analysis remains unchanged with the only

difference being that we need to substitute m (t) in equation (28) for the target price implied

by the shock.28 It is for household welfare that the source of shocks becomes most interesting.

We consider the impact of two shocks: to productivity and to the desired markup of firms.

The aggregate productivity shock changes the marginal product of labor from 1 to Z (t).

The desired markup shock changes the elasticity of substitution between varieties of goods ε,

leading to a new desired markup. The first-order approximation to the optimality condition

28For results concerning private efficiency, as well as the derivation of results presented in this section,
see the Online Appendix, Sections 4 and 5.
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for price-setting becomes:

xj (t) = x (t) = Et

[∫∞
0
e−ρs (1−G (s)) [wj (t+ s) + ζ (t+ s)− z (t+ s)] ds∫∞

0
e−ρs (1−G (s)) ds

]
∀j,

where ζ (t+ s) is the log-deviation from the steady state of the desired markup ε(t)
ε(t)−1

, and

z (t+ s) is log labor productivity. Also, yj (t) = lj (t) + z (t). Finally, to second order, the

expected utility function can be approximated as

EU0 = −Y 1−σ
∫ ∞

0

e−ρt
[
ayy (y (t)− by∗ (t))2 + a∆

∫ 1

0

(pj (t)− p (t))2 dj

]
dt+ t.i.s., (35)

where t.i.s. are terms independent of selection, y∗ (t) = 1+ψ−1

σ+ψ−1 z (t) is the deviation from

steady-state of the efficient level of output (i.e., the level that would prevail under flexible

prices and perfect competition), and b = (ε− 1) /
(
ε− 1+ψ−1

σ+ψ−1

)
.29

Consider first a level shock to productivity, so that znew (t) − zold = ∆z for t > 0 with

probability 1
2
, and it equals −∆z otherwise. Given strategic neutrality, it follows that x (t) =

− 1+ψ−1

1+ψ−1ε
znew ∀t and y (t) = −p (t) = −

(
1− e−Λt−ΛΞ(t)

)
xnew =

(
1− e−Λt−ΛΞ(t)

)
1+ψ−1

1+ψ−1ε
znew.

The price dispersion term
∫ 1

0
(pj (t)− p (t))2 dj is proportional to

(
1− e−Λt−ΛΞ(t)

)
e−Λt−ΛΞ(t),

so that, as before, selection has an ambiguous welfare effect.

The term in y (t) can be written as

E0

[
(y (t)− by∗ (t))2] =

(
1 + ψ−1

1 + ψ−1ε

)2 (
b− 1 + e−Λt−ΛΞ(t)

)2
(∆z)2 .

Insofar as output effects are concerned, higher selection is unambiguously welfare-improving

so long as b−1+e−Λt−ΛΞ(t) > 0 for all t. Since e−Λt−ΛΞ(t) > 0, this will necessarily be the case if

b > 1. In that case, selection is beneficial because economies with higher selection approach

efficient output more quickly. If, however, b < 1, the effect of selection is ambiguous.

Intuitively, b < 1 introduces a motive for the planner to stabilize output relative to efficient

output. By reducing the responsiveness of output to productivity shocks, low selection helps

the planner achieve this objective.

Consider now the impact of a level shock to desired markups, so that ξnew (t)− ξold = ∆ξ

for t > 0 with probability 1
2

and equals −∆ξ otherwise. It follows that xnew (t) = 1
1+εψ−1 ξ

new

29As before, first-order terms disappear because of the assumption that shocks average out in expectation.
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for t > 0 and y (t) = −p (t) = −
(
1− e−Λt−ΛΞ(t)

)
xnew = −

(
1− e−Λt−ΛΞ(t)

)
1

1+εψ−1 ξ
new.

The price dispersion term
∫ 1

0
(pj (t)− p (t))2 dj is proportional to

(
1− e−Λt−ΛΞ(t)

)
e−Λt−ΛΞ(t).

Since efficient output does not change (i.e., y∗ (t) = 0), the output term (y (t)− by∗ (t))2 is

now

E0

[
(y (t)− by∗ (t))2] =

(
1− e−Λt−ΛΞ(t)

)2
(

1

1 + εψ−1

)2

(∆ξ)2 .

Thus, in terms of the welfare losses that are due to output fluctuations, higher selection is

unambiguously detrimental to welfare. Intuitively, if markup shocks are prevalent, weaker

selection can be socially beneficial, since it prevents actual markups from fluctuating as

much.

6.4 Summary

In this section we analyzed the relationship between selection and efficiency (both private

and social) in the face of different kinds of shocks. Differently from the analysis of non-

neutrality in previous sections, this requires the use of a second-order approximation of

objective functions. Up to second order, the effects of selection on private and social efficiency

are ambiguous. Furthermore, because firms and society face different objective functions,

the implications of selection for private efficiency may be opposite from those for social

efficiency. For example, in face of markup shocks, high selection may be optimal for firms

but detrimental for social welfare.

While we focus our exposition on aggregate shocks, our analysis of the implications of

selection for private efficiency applies equally to cases in which shocks to firms’ frictionless

optimal prices are idiosyncratic. In this context, it is natural to entertain the possibility

that the pattern of selection – rather than being arbitrary – should be the outcome of some

optimization on the part of firms, with idiosyncratic shocks figuring prominently.30

The fact that firms and society face different objective functions, together with the fact

that aggregate and idiosyncratic shocks may have different dynamic properties, can lead to

a tension between private and social efficiency. Therefore, firms may choose a pattern of

selection that is suboptimal from a social perspective.

30While we take the pattern of selection to be a primitive in our model, time-dependent pricing may be
derived as stemming from firms’ optimal decision-making in face of different kinds of frictions. For example,
Bonomo and Carvalho (2004) and Alvarez and Lippi (2014) examine cases in which Taylor pricing is optimal.
In contrast, Woodford (2009) develops a model in which the optimal policy can be well approximated by
Calvo (1983) pricing.
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7 Conclusion

We investigate the different ways in which the shape of the distribution of duration of price

spells affects the real effects of nominal aggregate demand shocks. We highlight a mechanism

that so far has barely been given attention in the literature: a selection for the time since

prices were last adjusted. In fact, we show that selection provides a complete characterization

of the distribution of price durations in time-dependent sticky-price models. We also analyze

the implications of selection for private and social efficiency in the presence of monetary and

other kinds of shocks.

The results in the paper suggest that a careful characterization of the distribution of price

durations is of crucial importance for the proper evaluation of the aggregate implications of

nominal price stickiness. While the results are derived for the case of time-dependent pricing,

there is no reason why the selection effect identified here should not hold some relevance more

broadly, whenever the timing of price changes is not entirely up to the discretion of the firms.

This suggests that further research on price setting would do well to focus on models that

are able to fully account for the distribution of price spells and investigate the extent to

which the mechanisms emphasized here continue to matter.

34



References

[1] Adam, K. (2007), “Optimal monetary policy with imperfect common knowledge,” Jour-

nal of Monetary Economics 54: 267-301.

[2] Alvarez, F. and F. Lippi (2014), “Price Setting With Menu Cost for Multiproduct

Firms,” Econometrica 82: 89-135.

[3] Alvarez, F., F. Lippi, and L. Paciello (2012), “Monetary Shocks in a Model with Inat-

tentive Producers,” mimeo.

[4] Alvarez, F., H. Le Bihan and F. Lippi (2014), “Small and Large Price Changes and the

Propagation of Monetary Shocks”, NBER Working Paper 20155.

[5] Bonomo, M. and C. Carvalho (2004) “Endogenous time-dependent rules and inflation

inertia.” Journal of Money, Credit and Banking : Vol. 36, N. 6, pp. 1015-1041.

[6] Benigno, P. and M. Woodford (2005), “Inflation Stabilization and Welfare: The Case of

a Distorted Steady State,” Journal of the European Economic Association 3: 1185-1236.

[7] Bils, M. and P. Klenow (2004), “Some Evidence on the Importance of Sticky Prices,”

Journal of Political Economy 112: 947-985.

[8] Caballero, R. (1989), “Time dependent rules, aggregate stickiness and information ex-

ternalities,” Columbia University Working Paper.

[9] Calvo, G. (1983), “Staggered Prices in a Utility Maximizing Framework,” Journal of

Monetary Economics 12: 383-98.

[10] Caplin A. and D. Spulber (1987), “Menu Costs and the Neutrality of Monery,” Quarterly

Journal of Economics 102: 703-726.

[11] Carvalho, C. (2006), “Heterogeneity in Price Stickiness and the Real Effects of Monetary

Shocks,” Frontiers of Macroeconomics : Vol. 2 : Iss. 1, Article 1.

[12] (2008), Heterogeneity in Price Setting, Ph.D. dissertation, Princeton

University.

35



[13] Carvalho, C. and F. Schwartzman (2008), “Heterogeneous Price Setting Be-

havior and Aggregate Dynamics: Some General Results,” mimeo available at

http://cvianac.googlepages.com/papers.

[14] Chari, V.V., P. Kehoe and E. McGrattan (2000), “Sticky price models of the business

cycle: can the contract multiplier solve the persistence problem?” Econometrica 68.5:

1151-1179.

[15] Danziger, L. (1999), “A Dynamic Economy with Costly Price Adjustments,” American

Economic Review, 89: 878-901.

[16] Dotsey, M., R. King and A. Wolman (1997), “State-Dependent Pricing and Dynamics

of Business Cycle” Federal Reserve Bank of Richmond Working Paper Series, No. 97-2.

[17] (1999), “State-Dependent Pricing and the General Equilibrium Dynam-

ics of Money and Output,” Quarterly Journal of Economics 114: 655-690.

[18] Golosov, M. and R. E. Lucas Jr. (2007), “Menu Costs and Phillips Curves,” Journal of

Political Economy 115: 171-199.

[19] Kiley, M. (2002), “Partial Adjustment and Staggered Price Setting,” Journal of Money,

Banking and Credit 34: 283-298.

[20] Klenow, P., and O. Kryvtsov (2008), “State-Dependent or Time-Dependent Pricing:

Does It Matter for Recent U.S. Inflation?” Quarterly Journal of Economics 123: 863-

904.

[21] Klenow, P. and B. Malin (2010), “Microeconomic Evidence on Price Setting,” Handbook

of Monetary Economics, Ed. 1, vol. 16(6): 231 - 284.

[22] Mankiw, G. and R. Reis (2002), “Sticky Information Versus Sticky Prices: A Proposal

to Replace the New Keynesian Phillips Curve,” Quarterly Journal of Economics 117:

1295-1328.

[23] Reis, R. (2006), “Inattentive Producers”, The Review of Economic Studies 73 (3): 793-

821.

[24] Sheedy, K. (2010), “Intrinsic Inflation Persistance,” Journal of Monetary Economics 57:

1049-1061.

36



[25] Taylor, J. (1979), “Staggered Wage Setting in a Macro Model,” American Economic

Review 69: 108-113.

[26] Vavra, J. (2010), “The Empirical Price Duration Distribution and Monetary Non-

Neutrality,” mimeo available at https://sites.google.com/site/jvavra/docs/paper10-29-

10 fordistribution.pdf?attredirects=0.

[27] Wolman, A. (1999), “Sticky Prices, Marginal Cost, and the Behavior of Inflation,”

Federal Reserve Bank of Richmond Economic Quarterly 85 (Fall 1999), 29-48.

[28] Wooodford, M. (2009), “Information-constrained state-dependent pricing,” Journal of

Monetary Economics 56, Supplement: S100-S124.

[29] (2003), Interest and Prices: Foundations of a Theory of Monetary Pol-

icy, Princeton University Press.

[30] Yao, F. (2015), “ A Note on Increasing Hazard Functions and the Monetary Transmis-

sion Mechanism,” forthcoming in Macroeconomic Dynamics.

37



2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
C

um
ul

at
iv

e 
R

ea
l E

ffe
ct

T

 

 

α = 1/3

α = 1

α = 3

Figure 1: Cumulative real effect a shock to the level of nominal income: Same average
duration, different variances.

Note: Average price duration is equal to 2. Distribution of price durations follow
equations (24) and (25), see Online Appendix for details.
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