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Long-run inflation expectations do vary over time. That is, they are not perfectly

anchored in real economies; moreover, the extent to which they are anchored can

change, depending on economic developments and (most important) the current

and past conduct of monetary policy. In this context, I use the term “anchored”

to mean relatively insensitive to incoming data. So, for example, if the public

experiences a spell of inflation higher than their long-run expectation, but their

long-run expectation of inflation changes little as a result, then inflation expecta-

tions are well anchored. If, on the other hand, the public reacts to a short period

of higher-than-expected inflation by marking up their long-run expectation con-

siderably, then expectations are poorly anchored — Bernanke (2007)

1 Introduction

How best to provide a nominal anchor is a central question in monetary economics. Inflation

targeting regimes emphasize a credible commitment to a numerical objective for inflation in

the medium to long term. By anchoring long-term expectations, central banks are free to

pursue activist short-run stabilization policy. Yet despite the obvious importance of long-

term inflation expectations, models for policy analysis provide little guidance on how market

participants form these expectations, or how policy ensures expectations to be consistent

with central bank objectives. Indeed, most models simply assume long-term expectations

are consistent with the policy strategy of the central bank.1

A complete description of inflation targeting as a framework for monetary policy must

include a theory of how and when inflation targeting successfully anchors long-run inflation

expectations. Only with a theory can we answer questions like: Are inflation expectations

anchored? Will chronic undershooting of inflation targets lead to downward drift and un-

anchoring of long-term expectations? How can we reconcile large negative output gaps and

stable inflation over the past decade, with positive output gaps and high inflation in the

1970s?

We study a New Keynesian model in which poorly anchored long-term inflation expec-

tations are the source of low-frequency movements in inflation. The degree to which expec-

tations are anchored depends on the endogenous link between long-term expectations and

short-term forecast errors. The strength of this connection depends on historical forecasting

performance. In our model the evolution of long-term beliefs depends on monetary policy

1This is true in a wide class of New Keynesian models, including those with indeterminacy of equilib-
rium and sunspots [Clarida, Gali, and Gertler (2000), Albanesi, Chari, and Christiano (2003), Lubik and
Schorfheide (2004)], regime switching [Davig and Leeper (2006), Bianchi and Melosi (2017) ], and exogenous
time-varying inflation targets [Cogley and Sbordone (2008)].
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and structural shocks. The model, estimated using only inflation and short-term forecasts

from professional surveys, accurately predicts observed measures of long-term inflation ex-

pectations. This is the first paper to directly test this mechanism, central to many models

of imperfect information and learning.

The model has a central bank with a fixed inflation target. The policy regime is fixed for

all time. Subject to nominal rigidities, monopolistically competitive firms set prices optimally

as a function of expectations about the future path of marginal costs and inflation. As in

the standard New Keynesian model, marginal costs are determined by monetary policy and

aggregate demand. The key additional state variable in our model is firms’ beliefs about

long-run inflation. Firms are uncertain about the long-run mean of inflation: this could be

because there is no publicly announced inflation target, as was the case for the United States

over much of our sample, or that the central bank lacks the commitment, the tools or right

incentives to implement the inflation target.

Price setters behave like econometricians. Following Marcet and Nicolini (2003) firms

are unsure about the correct model to forecast inflation and must choose between two es-

timators for the long-run mean inflation rate: either i) a decreasing-gain algorithm; or ii)

a constant-gain algorithm. The first estimator is ordinary least squares which is consis-

tent with estimating a time-invariant inflation mean. The gain is the inverse of the sample

size, so that accumulating evidence of a stationary mean leads to declining sensitivity to

new information. The second estimator implies a constant and relatively high sensitivity to

new information. Geometrically discounting older data permits tracking different forms of

structural change such as a sudden shift in the inflation mean.

Firms select their estimator using a model selection criterion. Similar in spirit to Brown,

Durbin, and Evans’ (1975) CUSUM specification test and Cho and Kasa’s (2015) model

validation procedure, the criterion has the property that large persistent forecast errors lead

agents to doubt a constant mean of inflation. When this weighted average is larger than

a specific threshold, firms suspect the inflation target is shifting and use a constant gain

forecasting model.

Collectively these assumptions give formal expression to the ideas of Bernanke (2007).

How sensitive expectations are to forecast errors depends on historical forecasting perfor-

mance. For a given forecast error, the size of long-run mean revisions will depend on which

forecasting model is being used, and, for the decreasing-gain algorithm, how long that esti-

mator has been used. Importantly, the framework permits a formal definition of anchored

expectations. Following Preston (2006) and Eusepi and Preston (2010), we say long-term

expectations are anchored when beliefs are consistent with the policy regime. That is, long-

term expectations are determined under the correct assumption of a constant inflation mean
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and firms update their estimate using the decreasing gain algorithm. Conversely, we say

expectations are un-anchored when agents doubt a constant long-run inflation mean and

switch to a constant gain algorithm. Expectations display high sensitivity to forecast errors.

The paper makes empirical, theoretical and methodological contributions. Empirically,

we assess the link that the model forges between short-term inflation surprises and long-run

beliefs. We use observed data on inflation and short-term inflation expectations to measure

forecast errors. Conditional on observing forecast errors, the model makes sharp testable

predictions about the evolution of agents’ estimated inflation mean, the main driver of long-

run inflation expectations.

Using Bayesian methods, we compare model-implied predictions of long-term inflation

expectations with equivalent measures from survey data (which are not used in estimation).

Over a long sample of US data, 1955 to 2015, the model explains well both short- and

long-run historical inflation expectations from the Survey of Professional Forecasters and

the Michigan Survey of US households. The model demonstrates expectations were poorly

anchored before the late 1990s, with long-run expectations displaying high sensitivity to

new information.2 Formal predictive likelihood comparisons reveal the model provides a

better fit of long-term expectations when compared to an otherwise equivalent model with

a single constant gain; a model with rational expectations; and a model with an exogenous

time-varying inflation target. Using the posterior parameter distribution from US data, we

provide a further evaluation of the model, using it to explain professional survey expectations

for a range of OECD countries. The model also fits these data and detects episodes of un-

anchored expectations.

Large and persistent forecast errors lead firms to doubt a constant inflation target and

adopt a constant gain forecasting technology. A firm’s optimal price becomes more sensitive

to new information because revisions to long-term inflation expectations are more sensitive

to short-run forecast errors. In aggregate, this forges strong feedback between expected

and realized inflation: beliefs are partially self-fulfilling. The model is self-referential in

the language of Marcet and Sargent (1989) — beliefs determine inflation, which in turn

determines beliefs. This propagation of forecast errors delivers trend inflation.

Absent self-referential behavior the model can explain neither the extent and pace of the

rise of the Great Inflation, nor the gradual decline and ultimate stabilization of inflation

expectations over the Great Moderation.3 That long-term expectations don’t shift during

2Having a structural model provides a richer interpretation of what constitutes anchored expectations
than approaches based on pass-through regressions of either macroeconomic news or movements in short-
term expectations to long-term expectations as developed by Gurkaynak, Levin, and Swanson (2010) and
Beechey, Johannsen, and Levin (2011). Low sensitivity of long-run beliefs need not imply consistency with
a central bank’s inflation target.

3For example, counterfactuals demonstrate that an identical model with the same beliefs but without
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the Great Recession (despite shocks being estimated to have comparable magnitude to the

1970s) reflects the anchoring of expectations. Time variation in the the degree of expecta-

tions’ anchoring explains the coexistence of large negative output gaps and missing deflation

in the Great Recession, with the positive output gaps and high inflation of the Great Infla-

tion. The standard New Keynesian Phillips curve is consistent with data once the nature of

expectations formation and the degree of anchoring are properly accounted for.4

Theoretically, we show that the belief structure places lower bounds on rationality and

that monetary policy plays a central role in shaping forecast errors and self-referentiality.

We show firms will learn the inflation target given enough data. This distinguishes our paper

from other studies on expectations anchoring which imply agents can never hold expectations

consistent with monetary strategy. Following Honkapohja and Evans (1993) and Marcet and

Nicolini (2003), we show that parameters governing firms’ forecasting technology are optimal

in the sense that given other firms’ chosen parameters, it is optimal for any one firm to also

adopt them. However, optimality is sustained by a high degree of self-referentiality. Stronger

monetary policy responses reduce self-referentiality, leading firms to choose a forecasting

model with lower sensitivity to new information (lower gain) given other firms’ behavior.

Methodologically, we advance understanding of how to estimate models with learning.

We identify and resolve a conceptual problem in extant work, by introducing techniques that

are novel to the macroeconomics literature. Our model is an example of a state-dependent

learning rule, which includes as a special case recursive least-squares estimation of statistical

models, such as vector auto-regressions, common to the adaptive learning literature. Building

on Primiceri (2005) and Sargent, Williams, and Zha (2006), the learning literature estimates

this class of model using standard linear methods. This requires learning rules to depend only

on observable data. But in most empirical applications, beliefs depend on unobserved states

(from the perspective of the econometrician outside the model), which requires a non-linear

estimation procedure.5 We make use of the marginalized particle filter of Schön, Gustafsson,

and Nordlund (2005), to exploit the fact that the model is conditionally linear. This permits

a highly efficient algorithm without requiring large numbers of particles. The approach can

be applied more widely to models with state-dependent learning rules.

Related literature. Our paper is most closely related to Marcet and Nicolini (2003) and

Milani (2014). We adapt and implement Marcet and Nicolini’s (2003) learning mechanism

in a New Keynesian model. While they study the determinants of recurring hyperinflation

episodes, we study low-frequency properties of inflation. Milani (2014) estimates a New

self-referential feedback cannot generate the Great Inflation.
4See Del Negro, Giannoni, and Schorfheide (2015) for a discussion of relevant literature.
5Milani (2007, 2014) and Slobodyan and Wouters (2012) estimate such models within a linear framework.

This requires specific assumptions on agents’ information sets, which are discussed in section 3.
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Keynesian model with closely related beliefs on US data. He shows that agents switch often

between constant- and decreasing-gain estimators over the postwar sample. In these papers

learning dynamics generate an endogenous trend in inflation with time-varying volatility.

Our work also builds on Cho and Kasa (2015) by appealing to the idea that agents use

econometric tests based on past forecast errors to select from a set of forecasting models.

Other approaches also generate an endogenous inflation trend. Using a New Keynesian

Phillips curve and boundedly rational beliefs, Lansing (2009) demonstrates the existence of

a self-confirming equilibrium in which agents’ Kalman gain is uniquely determined. Intro-

ducing learning in this model induces time variation in the estimated gain, which is argued

to generate time-varying volatility of the kind observed in US inflation data. Branch and

Evans (2007) and Cornea-Madeira, Hommes, and Massaro (2019) instead emphasize belief

heterogeneity and endogenous predictor selection based on evolutionary fitness. Empirical

estimates show that time variation in the number of firms adopting misspecified random

walk inflation beliefs can explain low-frequency properties of inflation. Primiceri (2005) and

Sargent, Williams, and Zha (2006) emphasize central bank learning based on a mis-specified

Phillips curve as the source of inflation trend. Estimated on US data, these models explain

the rise and fall of inflation during the post war period.

We share with these papers the idea that imperfect information and the propagation of

forecast errors over time is empirically and quantitatively relevant to low-frequency move-

ments in US inflation data. What sets our study apart is the emphasis on long-term infla-

tion expectations: to explain low-frequency properties of inflation and to provide a coherent

policy-relevant definition of anchored expectations. Long-term expectations play no role in

the above papers — decisions are based solely on short-term forecasts. Critically, none of

these papers use survey measures of inflation expectations to empirically test the relationship

between forecast errors and long-run expectations. We therefore provide the first paper to

directly identify the learning mechanisms proposed in the literature. Lastly, none of these

papers make predictions about long-term inflation expectations, which is one of our key

results.

Finally, the endogeneity of the inflation trend distinguishes our results from Cogley and

Sbordone (2008) and Erceg and Levin (2003) which assume low-frequency properties of

inflation are given exogenously.6 The model provides an alternative interpretation of the

driving forces behind inflation dynamics, which have distinct implications for policy. Indeed,

the results suggest the Great Inflation occurred despite the Federal Reserve’s commitment to

6Formally Erceg and Levin (2003) assume agents must learn about exogenous transitory and permanent
shocks to the inflation target. But this is isomorphic to a model with full information for a certain process
for the exogenous inflation target — see Hamilton (1994).
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a constant inflation target. For the same reason, our work differs from a large literature which

uses reduced-form statistical models to explain inflation dynamics. For example, building

on Stock and Watson (2007), papers such as Kozicki and Tinsley (2012) and Chan, Clark,

and Koop (2015) use expectations data to better fit low-frequency properties of inflation.

A road map. Section 2 develops a New Keynesian model with imperfect information.

Section 3 provides estimates. Section 4 discusses predictions and the model’s ability to

explain observed long-term expectations. Section 5 provides counterfactuals to understand

how beliefs generate an endogenous inflation trend. Section 6 demonstrates beliefs satisfy

lower bounds on rationality: firms can learn the inflation mean, and given other firms have

the proposed beliefs, it is optimal to have those beliefs. However, under a more aggressive

monetary policy it would be optimal to adopt a forecasting model with a lower gain. Section

7 uses formal model comparisons to demonstrate our model provides a superior account

of long-term survey expectations data than do a range of alternative models. Section 8

provides an example of how to interpret the model selection criterion as the outcome of

a formal sequential statistical test, as well as evidence that discrete shifts in forecasting

model are required to explain observed data. Section 9 demonstrates the model can explain

long-term forecast data from US household and professional forecasters from other countries.

Section 10 concludes.

2 A Model with Endogenous Inflation Drift

This section presents a New Keynesian model. The optimal pricing decisions of firms relate

beliefs about the long-run inflation target to current inflation outcomes, with monetary

policy determining the strength of this relationship. We show how these beliefs are updated

over time, derive the state-space representation of the model, which includes an equation for

the endogenous inflation trend, and relate it to other prominent models of inflation.

Theory of Price Setting. A continuum of monopolistically competitive firms face a

price-setting problem subject to quadratic adjustment costs as in Rotemberg (1982). Given

subjective beliefs Êf
t , each firm f ∈ [0, 1] maximizes the expected present discounted value

of profits

Êf
t

∞∑
T=t

Λt,TΓT (f)

6



Anchored Inflation Expectations

by choice of Pt (f) subject to the demand and profit functions

Yt (f) =

(
Pt (f)

Pt

)−ψt
Yt

Γt (f) = Yt (f)

(
Pt (f)

Pt
− St

)
− Φ

2

(
Pt (f)

Pt−1 (f)
− eγπt−1

)2

for all T ≥ t, where Pt and Yt give the aggregate level of prices and output in period t, and

St a real marginal cost function. The exogenous time-varying elasticity of demand across

differentiated goods satisfies ψt > 1, with mean ψ̄. The quadratic costs of price adjustment

are determined by price movements relative to an inflation index, γπt−1, a linear function of

aggregate inflation, πt−1 = ln (Pt−1/Pt−2).7 The constant Φ > 1 scales the size of adjustment

costs. The parameter 0 ≤ γ ≤ 1 measures the degree of price indexation. When setting

prices in period t, firms value future streams of income using the stochastic discount factor

Λt,T which in steady state takes the value βT−t, for 0 < β < 1 and all T > t.

Deriving the first-order condition and taking a log-linear approximation around a zero

inflation steady state provides the optimal price

p∗t (f) = αp∗t−1 (f)− α (πt − γπt−1)

+αÊf
t

∞∑
T=t

(αβ)T−t (ξpsT + β (1− α) (πT+1 − γπT )) + αµt

where

p∗t (f) = ln

(
Pt (f)

Pt

)
; st = ln

(
St
S̄

)
; ψ̂t = ln

(
ψt
ψ̄

)
; µt = −ξp

ψ̂t
ψ̄ − 1

and ξp = α−1 (1− α) (1− αβ) with 0 < α < 1, the model’s stable eigenvalue.8 The markup

shock µt is a normally distributed and serially independent process. Optimal price setting

requires firms to project the future evolution of marginal costs and aggregate inflation,

adjusted for indexation.9 Aggregating over the continuum in a symmetric equilibrium, where

7To the first order this is equivalent to a model of Calvo price setting in which firms, when not optimally
re-setting prices, adjust prices according to the index γπt−1.

8In a model of Calvo price setting α corresponds to the probability a firm cannot adjust their price in any
given period. While it is well understood the predictions of Rotemberg and Calvo pricing are different at
non-zero average rates of inflation, Cogley and Sbordone (2008) show in a closely related model with Calvo
pricing it is the assumption of an exogenous inflation trend, rather than the point of approximation, that is
most relevant to explaining US inflation data.

9See Preston (2005) and Eusepi and Preston (2018b) for discussions of optimal price setting under arbi-
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firms set identical prices, Pt (f) = Pt, and hold the same subjective beliefs, Êf
t = Êt, provides

the aggregate supply curve

πt − γπt−1 = µt + Êt

∞∑
T=t

(αβ)T−t [ξpsT + (1− α) β (πT+1 − γπT )] . (1)

Monetary Policy and Demand. To close the model we assume the central bank

implements monetary policy using the targeting rule

πt − γπt−1 + λxxt = ϕt, (2)

where xt is the output gap; λx a policy parameter indexing the relative weight given to

stabilizing the otuput gap; and

ϕt = ρϕt−1 + εt (3)

an exogenous monetary policy shock. From Giannoni and Woodford (2002) this target

criterion is the optimal policy under discretion given our assumption that the central bank

has a zero inflation target. As frequently assumed in the New Keynesian literature the

output gap is the instrument of policy.10 We interpret monetary policy shocks as being

due to policy mistakes or to mis-measurement of underlying inflation and the output gap.11

Marginal costs are assumed to be proportional to the output gap so that

st = φxt, (4)

where the constant of proportionality is determined by preferences and technology. Without

loss of generality, we assume φ = 1. For a detailed account of this relationship and structural

interpretation see Woodford (2003).

Rational Expectations Equilibrium. Under rational expectations inflation satisfies

the first-order difference equation

πt − γπt−1 = ξpsT + βEt (πt+1 − γπt) + µt, (5)

where Et denotes mathematical expectations. Combining with (2) and (4) and solving gives

trary beliefs.
10Because we don’t exploit data on interest rates and output in the empirical work, we don’t model the

transmission mechanism of monetary policy. But standard preference and technology assumptions give the
stated policy.

11See, for example, Orphanides (2001) and Primiceri (2005).
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equilibrium inflation

πt = γπt−1 + ρω̄ϕt−1 + ηt (6)

where

ω̄ = (1 + (1− βρ)λx)
−1 and ηt = ω̄εt +

(
1 + ξpλ

−1
x

)−1
µt = ε̃t + µ̃t.

See the appendix for details. Inflation is a stationary process with zero mean, consistent

with the central bank objective.

Imperfect Knowledge. The optimal price decision rule implies firms must forecast

future marginal costs and inflation. To simplify the analysis, we assume firms learn only

about the long-run mean of inflation. They are endowed with the correct forecasting model

of marginal costs so that forecasts for sT+1 for T ≥ t are computed as

Êf
t sT+1 =

1

λx
Êf
t [ϕT+1 − (πT+1 − π̄t) + γ (πT − π̄t)] (7)

Êf
t ϕT+1 = ρT−tϕt. (8)

The term π̄t reflects the firm’s belief that the inflation target is non-zero. Inflation is forecast

using the statistical model

πt = γπt−1 + (1− γ) π̄t + ρω̄ϕt−1 + ft, (9)

where ft is the forecast error, given an estimate of the inflation target π̄t. This model nests

rational expectations — compare to (6). It assumes firms have perfect information about the

short-run dynamics of the economy, governed by monetary policy shocks and lagged inflation.

We study the anticipated utility solution of the model — see Kreps (1998), Sargent (1999)

and Eusepi and Preston (2018b) — so that beliefs about the inflation target satisfy

Êt−1π̄T = π̄t. (10)

From (9), long-run conditional inflation expectations must satisfy

lim
T→∞

ÊtπT = π̄t

which Kozicki and Tinsley (2001) call a shifting end-point model. This expression makes

clear that beliefs about the inflation target are equivalent to long-term inflation expectations.

Movements in beliefs are then informative about the anchoring of expectations.
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Evaluating subjective expectations using (7)-(10) in the aggregate supply curve (1) pro-

vides the true data-generating process

πt = γπt−1 + (1− γ) Γπ̄t + ρω̄ϕt−1 + ηt, (11)

where

Γ =
1

1 + ξpλ−1
x

(1− α) β

1− αβ
.

The subjective and objective probability models, (9) and (11), differ when the coefficient

Γ differs from unity. This coefficient measures the degree of self-referentiality. Firms raise

their optimal price if they believe the inflation target has risen, so that aggregate inflation

also rises. The stance of monetary policy regulates the strength of this connection. When

λx → 0 the targeting criterion is equivalent to strict inflation targeting which eliminates self-

referentiality. When λx → ∞ the targeting criterion is equivalent to output gap targeting

and, for standard parameters values, implies values of Γ near unity.12

Estimating the inflation mean. We assume firms behave like econometricians who

are unsure about the correct model to forecast inflation. To confront this uncertainty, they

choose between two estimation algorithms: a decreasing-gain algorithm that is appropriate

when the inflation target is constant; and a constant-gain algorithm that, by discounting past

observations, is appropriate when either there is a sudden but infrequent shift in the mean

or the inflation mean drifts over time. The two estimators lead to the following recursive

updating

π̄t = π̄t−1 + k−1
t × ft−1, (12)

linking revisions in the current estimate of the inflation mean to the last one-step-ahead

forecast error, ft−1 = πt−1 − Êt−2πt−1.13 Let k−1
t denote the gain. Recursive least square

learning implies

kt = kt−1 + 1.

Because the gain is the inverse of the sample size, accumulating evidence of a stationary

mean leads to declining sensitivity to new information. Discounting past information leads

to a constant gain

k−1
t = ḡ > 0

12See the appendix for derivations. For example, taking uncontroversial values β = 0.99 and α in the
range 0.5− 0.85, implies Γ falls in the range 0.94− 0.98.

13Here Êt−2πt−1 = γπt−2 + (1− γ) Γπ̄t−1 + ρω̄ϕt−2. A complicated simultaneity is resolved by assuming
the estimate, π̄t, depends on the previous-period’s forecast error so that π̄t−1 is determined by information
available at t− 2. This is standard in the learning literature.
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and therefore a constant and relatively high sensitivity to new information.

The final component of the model specifies the conditions under which firms adopt each

estimator. Being alert to possible changes in the inflation mean, firms have explicit con-

cern for model specification. In each period their model is tested: if the hypothesis of a

time-invariant mean is rejected agents switch to a constant-gain algorithm. In our baseline

specification this process of model selection and validation is not explicitly modeled. We

assume that firms are able to detect model miss-specification when it is sufficiently large.

To capture this in a parsimonious way, the evolution of the learning gain is directly tied

to the relative distance of forecasts under the subjective (Êt−1πt) and objective (Et−1πt)

probability distributions:

kt+1 = I(θt≤θ) × (kt + 1) +
(

1− I(θt≤θ)
)
× ḡ−1, (13)

where I(.) is an indicator function which depends on the magnitude

θt =
∣∣∣Êt−1πt − Et−1πt

∣∣∣ /ση, (14)

relative to a threshold value θ̄. While the criterion (14) involves model-consistent expecta-

tions (which they are assumed not to know), it is a function of observable forecast errors :∣∣∣Êt−1πt − Et−1πt

∣∣∣ = |(1− γ) (Γ− 1) π̄t|

=

∣∣∣∣∣(1− γ) (Γ− 1)

[
π0 +

t−1∑
τ=0

k−1
τ fτ

]∣∣∣∣∣ (15)

given some initial conditions π̄0, f0 and k0.14 It is equivalent to a weighted average of the

entire history of past forecast errors with weights given by the gain that applied in the period

of each forecast error. The distance tends to be large when forecast errors happen to be of

the same sign for several periods. This signals subjective beliefs about the inflation target are

far from the true value of zero and therefore a reasonable basis for specification tests.These

calculations are not meant to suggest that firms would naturally arrive at this criterion as

the basis for model selection. Rather the point is that a criterion based on past forecast

errors is natural. Indeed, the dependency on the cumulative history of past forecast errors

has much in common with the classic CUSUM test of Brown, Durbin, and Evans (1975).

14It is worth noting that the distance criterion takes the value of zero when either γ = 1 or Γ = 1.
With complete indexation inflation dynamics are independent of long-run expectations. In a self confirming
equilibrium subjective and objectives probability models are identical, though different to the full information
rational expectations equilibrium.
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Expectations anchoring. The model permits a formal definition of anchored expec-

tations which is directly tied to agents’ beliefs about the inflation mean. Following Eusepi

(2005), Preston (2006) and Eusepi and Preston (2010), we define expectations as anchored

when beliefs are consistent with the policy regime in place: a fixed inflation target. Ex-

pectations are then anchored when firms fail to reject a time-invariant mean: long-term

expectations display decreasing sensitivity to forecast errors and, if they remain anchored,

eventually converge to the correct mean. However, large and persistence forecast errors

can lead firms to abandon the hypothesis of a constant mean. Long-run beliefs become

un-anchored and tightly connected to short-term forecast errors.

Bounds to rationality. Is the estimator optimal given the information available to

agents? Firms are boundedly rational because they do not fully understand the economic

environment. This friction is central to modeling anchored inflation expectations. By as-

sumption, agents cannot write down a law of motion for the mean for inflation and then

adopt an optimal estimator. Firms do not know all possible future policy regimes and there-

fore can not assign probabilities to these regimes. We believe it is implausible to suppose that

firms, during the 1960s, could accurately assign probabilities to the likelihood of the Great

Inflation, or, standing at the peak of the Great Inflation, to the likelihood of the Federal

Reserve adopting inflation targeting some three decades later. However, following Marcet

and Nicolini (2003), we require beliefs to satisfy lower bounds to rationality. Specifically,

we impose that: i. agents eventually learn the truth—that is beliefs will not be anchored

asymptotically to the wrong mean;15 ii. belief parameters are such that agents will stick to

the estimator given the option to re-adjust; and iii. these ‘optimal’ belief parameters are not

invariant to monetary policy. Details about these bounds are discussed in section 6.

Model validation: discussion. In our baseline specification we do not explicitly model

agents’ recursive testing of their statistical model. This is done for two reasons. First,

simple validation rules are likely to violate our imposed rationality bounds. Second, a more

sophisticated testing procedure would make estimation unfeasible.

A simple criterion to test for model mis-specification is to evaluate current and recent

forecast errors against a threshold. For example, Marcet and Nicolini (2003) and Milani

(2014) present criteria based on recent forecast errors. However, recent forecast errors need

not be informative about low-frequency developments in a volatile process such as inflation.

15Cho and Kasa (2015) provide a detailed discussion of why statistical inference in this class of models is
complicated. Even though the decreasing-gain algorithm spans the truth, during the learning process, both
estimators are misspecified. Indeed, Evans, Honkapohja, Sargent, and Williams (2012) and Cho and Kasa
(2017) provide examples of models with our beliefs in which Bayesian model averaging leads decision makers
to adopt the incorrect model with probability 1. Our approach, therefore, follows Cho and Kasa’s (2015)
model validation procedure, which selects the correct model with probability 1.

12
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To be concrete, forecast errors in our model can be written

ft = ηt + (1− γ) (Γ− 1) π̄t. (16)

The first component is short-term noise, ηt, from marginal cost and mark-up innovations.

This is the dominant source of volatility in the forecast error. The second component arises

from model mis-specification. The magnitude of this term depends both on structural factors

affecting the degree of self-referentiality through Γ and on the size of subjective estimate π̄t

relative to its true time-invariant value of zero. The contribution of this term to the volatility

of the short-term forecast error is negligible because of a high degree of self-referentiality

(empirically Γ takes values near unity) and the fact that the inflation trend is slow moving

(it has small variance). For this reason, criteria based on current and recent forecast errors

lack power to detect shifts in the long-run mean of inflation. They would lead to frequent

switches in forecasting model, even when the the learning gain is arbitrarily small and model

mis-specification small. Firms’ would fail to converge to the true model asymptotically,

violating the lower bound to rationality discussed above.

The principal advantage of our baseline specification is it renders estimation of a non-

linear model tractable. It introduces no additional state variables so that the model is

conditionally linear given the gain. This allows us to exploit techniques from the statistics

literature in the form of the marginalized particle filter. Beliefs also introduce only two

parameters: the value of the constant gain, ḡ, and the threshold statistic, θ̄. However, in

section 8, we present a fully specified model where agents test their current model using a

recursive LM test like in Cho and Kasa (2015). While this model is calibrated, it delivers

very similar results.

Model Summary. The evolution of the gain in (13) can be written in compact form

kt+1 = fk (kt, π̄t) . (17)

Given the sequence of exogenous processes {ϕt, ηt}, model dynamics are described by the

pair of equations

πt = γπt−1 + (1− γ) Γπ̄t + ρω̄ϕt−1 + ηt (18)

π̄t+1 =
[
1 + f−1

k (kt, π̄t) (1− γ) (Γ− 1)
]
π̄t + f−1

k (kt, π̄t) ηt. (19)

The estimated mean inflation rate is a first-order auto-regressive process with time-varying

persistence and volatility. The persistence depends on the stance of policy. When Γ takes
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values near unity, beliefs about the inflation target are close to a unit root. As policy responds

more aggressively to inflation, Γ declines and beliefs are less persistent. The volatility also

depends on the estimated inflation target. When the estimate is close to the central bank’s

target, the learning gain is declining over time, lowering volatility in the inflation trend.

Because the model endogenously generates low-frequency properties of inflation, the in-

flation trend is a function of all model disturbances, which in this simple environment are

monetary policy and markup shocks. This contrasts with Cogley and Sbordone (2008) which

captures low-frequency movements in inflation with an exogenous process. Similarly, Erceg

and Levin’s (2003) imperfect information model assumes agents observe a noisy signal of the

true inflation target, itself a function of exogenous permanent and transitory shocks. Again,

trend inflation is exogenous.16

A further implication of this endogeneity is the inflation trend — equivalently, long-

run expectations — displays time-varying sensitivity to inflation forecast errors. Imperfect

information rational expectations models imply a constant sensitivity of long-run beliefs to

current forecast errors. A central contribution of this paper is to document substantial and

significant changes in this sensitivity over time. This contribution is independent of the

assumptions we make on the model selection criterion. Finally, the time-varying persistence

and volatility of the inflation trend provides a structural interpretation of Stock and Watson’s

(2007) reduced-form inflation model. Time variation in the extent to which expectations are

anchored explain changes in the persistence and volatility of inflation.

3 Estimation

The data and observation equation. We estimate the model with Bayesian methods

using US data on both inflation and survey measures of short-term inflation expectations

from professional forecasters. The estimation strategy employs only these data for infer-

ence on model parameters. The use of short-term forecasts directly identifies the forecast

errors that are central to the mechanism. Conditional on observing short-term forecasts, the

updating algorithm in (12) and (13) implies tight predictions for the evolution of the esti-

mated inflation mean. Having tied our hands in this fashion, model success is evaluated by a

comparison of model-implied predictions of long-term inflation expectations with equivalent

measures available from survey data.

For data comparability, we use the log-difference in the CPI as the measure of infla-

tion. Four survey measures of CPI inflation forecasts are used: one- and two-quarter-ahead

16Kozicki and Tinsley (2005) and Ireland (2007) also study models in which structural shocks affect the
central bank’s inflation target in an exogenously determined way. Models of exogenous drift are discussed
further in Section 7.
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forecasts from the Survey of Professional Forecasters (SPF); and two measures of six-month-

ahead forecasts from the Livingston Survey. The first Livingston Survey measure is com-

puted as the growth rate between the forecast of the CPI level six-months ahead and the last

monthly price level available to forecasters at the time of the survey. The second measure is

the growth rate between the forecast of the CPI level six-months ahead and the forecast of

the current CPI level. The latter is a more accurate measure of inflation expectations but it

is available only for a short sample.

The sample spans 1955Q1-2015Q4. The survey data are available over different sample

sizes and at different frequencies. The SPF measures are available starting in 1981Q3, at a

quarterly frequency. The Livingston survey is available only at a bi-annual frequency, but

its first measure of six-months-ahead forecasts is available since the beginning of the sample,

while the second starts only in 1992Q2. Reflecting the structure of these data, the model

observation equation is
πt

ESPF
t πt+1

ESPF
t πt+2

ELIV1
t

(
1
2

∑2
i=1 πt+i

)
ELIV2
t

(
1
2

∑2
i=1 πt+i

)

 = π∗ +H ′t

[
π̄t

ξt

]
+Rtot,

where ξt = (ηt, ϕ̃t, πt)
′; we estimate ϕ̃t = ω̄ϕt which rescales the monetary shock. The

rescaled shock’s process is then ϕ̃t = ρϕ̃t−1 + ε̃t. The structural parameter ω̄ is not esti-

mated. The variable π∗ is the mean inflation rate; and ot is measurement error attached

to both the survey data and CPI inflation. The observation matrix Ht captures the true

data generating process of inflation and the model-implied firm expectations of inflation.

The measurement error on inflation captures the fact the CPI measure of inflation exhibits

substantial quarter-to-quarter volatility that is not incorporated in short-term forecasts and

is understood to be temporary. For example, the technical appendix shows that while CPI

inflation is substantially more volatile than the GDP deflator, the survey-based forecasts

of these two variables are very similar. Finally, the matrices Ht and Rt are time varying

because of missing observations.

Marginalized particle filter. Because of non-linearities, we cannot estimate our model

using techniques based on the Kalman filter. However, our baseline model permits an efficient

estimation procedure. To proceed, partition the model states into a subset of non-linear

variables (π̄t, kt)
′ and a subset of linear variables, ξt, and write the state-space representation
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as

kt = fk (π̄t−1,kt−1)

π̄t = fπ̄ (π̄t−1,kt−1) + Aπ̄ (π̄t−1,kt−1) ξt−1 (20)

ξt = fξ (π̄t−1,kt−1) + Aξ (π̄t−1,kt−1) ξt−1 + Sξεt,

where εt = (ε̃t, µ̃t)
′ are normally distributed innovations, and remaining coefficients are

defined in the appendix. As our state-space system is linear conditional on the states (πt,kt),

we employ the Marginalized Particle Filter of Schön, Gustafsson, and Nordlund (2005): using

Bayes rule, the linear state variables ξt are marginalized out and estimated using the linear

Kalman filter. The nonlinear state variables are estimated using the particle filter — see,

for example, Kitagawa (1996).17 Because there is an explicit dependence between the linear

and nonlinear state variables the prediction of the nonlinear state variables can be used to

improve the estimates of the linear state variables. This feature distinguishes our application

from Rao-Blackwellization techniques commonly used in economics and finance.

Despite these methods being new to the macroeconomics literature, we are not the first

to estimate models with learning dynamics. Earlier contributions by Primiceri (2005) and

Sargent, Williams, and Zha (2006) also estimate models with state-dependent learning gains,

which include as a special case recursive least-squares estimation of statistical models, such

as vector auto-regressions. However, these models study beliefs which are solely a function

of variables that are observable to the econometrician. This special class of learning models

can be expressed in linear state-space form. In contrast, and in common with most dynamic

stochastic general equilibrium model applications, our framework assumes firm beliefs are

updated using information that is not directly observable to the econometrician, namely the

monetary policy shocks ϕ̃t. Correctly specified inference requires non-linear methods.18

Estimated parameters. Table 1 shows prior and posterior distributions for each param-

eter. The posterior distribution is obtained by first computing the mode of the distribution.

In a second step we use the Metropolis-Hastings algorithm to compute the full distribution.19

17See Fernandez-Villaverde and Rubio-Ramirez (2007) for a discussion of theory and application of the
particle filter to macroeconomic models without a conditionally linear structure.

18Milani (2007, 2014) and Slobodyan and Wouters (2012) use linear Kalman filter techniques to estimate
models of this kind. This requires arbitrary assumptions on agents’ information sets. In particular, to
compute forecast errors, agents are assumed to form predictions using the econometrician’s mean estimate
of processes such as the marginal cost. This is inconsistent with model micro-foundations which assume
agents observe all exogenous processes.

19We started the Metropolis-Hastings step using a diagonal matrix with prior variances on the diagonal.
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Prior distribution Posterior distribution
Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

π∗ Normal 2.250 0.400 2.461 2.472 2.102 2.880

θ Gamma 0.050 0.040 0.020 0.029 0.012 0.052
ḡ Gamma 0.100 0.090 0.125 0.145 0.103 0.203
γ Beta 0.500 0.265 0.115 0.128 0.090 0.173
Γ Beta 0.500 0.265 0.926 0.891 0.813 0.948
ρ Beta 0.500 0.200 0.874 0.877 0.832 0.917
σε̃ Inv.-Gamma 0.100 2.000 0.086 0.084 0.071 0.098
σµ̃ Inv.-Gamma 0.100 1.000 0.371 0.359 0.301 0.416
σo,1 Inv.-Gamma 0.100 1.000 0.264 0.277 0.217 0.335
σo,2 Inv.-Gamma 0.100 1.000 0.043 0.042 0.035 0.050
σo,3 Inv.-Gamma 0.100 1.000 0.020 0.021 0.014 0.028
σo,4 Inv.-Gamma 0.100 1.000 0.071 0.073 0.063 0.084
σo,5 Inv.-Gamma 0.100 1.000 0.048 0.049 0.041 0.059

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.

Table 1: Prior and Posterior Distribution of Structural Parameters

The data permit fairly tight identification of key model parameters. Measurement errors

on the survey forecasts have small variance. This provides confidence we identify the core

mechanism of the model. The measurement error on inflation implies price changes in the

model are somewhat less volatile than CPI inflation, but track its movements fairly closely.20

The sample average inflation rate, π∗, has a posterior mean of about 2.5%, in annualized

terms, and the 90% posterior interval ranges from 2.1% to 2.9%. The parameter γ is tightly

distributed around 0.1, suggesting a small degree of price indexation. This is consistent

with Cogley and Sbordone (2008), showing that once low-frequency movements in inflation

are properly accounted for, there is little evidence of price indexation. Concomitantly, the

feedback effects from drifting beliefs, measured by Γ, are substantial, with the 90% interval

between 0.8 and 0.95. Later counterfactual analysis demonstrates self-confirming beliefs are

the driving force behind the rise and fall of inflation over the sample period, and central to

long-term expectations being well anchored or not.

Turning to the parameters defining the learning algorithm, θ has a posterior mean of

The transition probability function was iteratively updated using short chains of between 20, 000 and 40, 000
draws. This process is repeated until the resulting variance-covariance matrix is stable. The variance-
covariance matrix so obtained is used to generate 5 samples of 200, 000 draws. A step size of 0.2 gave a
rejection rate of 0.64 in each sample. Convergence is evaluated using the Gelman and Rubin potential-scale-
reduction factor, which was well below 1.01 for all estimated parameters.

20In particular, model-implied inflation remains significantly more volatile than the GDP deflator. See the
additional Appendix for details.
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0.03 with 90% credible interval spanning 0.01 and 0.05. To evaluate these magnitudes,

for each draw from the posterior distribution, use (15) to measure the minimum absolute

distance between π̄t and its true value of zero required for firms to switch to a constant gain.

Using the 90% posterior interval, this threshold ranges between 0.3% and 0.8% in annual

terms. More concretely, the mean threshold implies that as π̄t drifts outside the interval

2% < π∗ + π̄t < 3% firms switch to the constant-gain regime. Firms are responsive to small

deviations from the true inflation mean. However, we will show it can take a sequence of

persistent and potentially large shocks to shift the estimated inflation drift significantly.

The constant gain has mean posterior estimate 0.14. Values of the gain within the 90%

interval imply firms give minimal weight to observations older than five years. For example,

at the boundaries of the 90% posterior interval, corresponding to ḡ = 0.1 and 0.2, the

weight on observations two-years old is 0.2 and 0.4 respectively, with five-year weights being

negligible. When inflation expectations are un-anchored, long-term inflation expectations

are quite sensitive to short-term forecast errors.

4 Model Predictions

Figure 1 displays the model’s fit of short-term inflation forecasts. In each panel, the dashed

gray line denotes CPI inflation; the solid black line displays the median prediction, while the

gray shaded area shows the 95% credible set. Consistent with the small size of the observation

errors in Table 1, the model-implied short-term forecasts correspond closely with the survey

forecasts represented in red and blue: forecast surprises are well disciplined by the data.21

This permits testing the link between short-term surprises and long-term expectations.

To this end, we compare model-based predictions with available survey-based long-term

forecasts. Because many surveys do not cover the entire sample, we use a number of mea-

sures from various surveys to build a comprehensive picture of long-term inflation expec-

tations. Prior to the late 1970s there are no professional forecast data. We therefore

use the five-to-ten-year-ahead forecasts from the Michigan Survey, restricted to the period

1974Q2-1977Q2.22 After this time the following professional forecast data are available. For

one-to-ten-year-ahead average inflation forecasts: the Decision Makers Poll Survey (1978Q3-

1980Q4); Livingston Survey (1990Q2-2015Q4); Blue Chip Economic Forecasts (1979Q4-

1991Q1); and the Survey of Professional Forecasters (1991Q1-2015Q4). For five-to-ten-year-

ahead average inflation forecasts: Blue Chip Economic Forecasts (1984Q1-2015Q4); Blue

Chip Financial Forecasts (1986Q1-2015Q4); Survey of Professional Forecasters (2005Q3-

21As mentioned above model-implied inflation, while somewhat less volatile, tracks closely observed CPI
inflation.

22We study the behavior of the Michigan survey in section 8.
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One-quarter ahead (SPF)

Two-quarters ahead (SPF)

Six-months ahead (Livingston)

Figure 1: Short-Term Forecasts.

The top and middle panels show the evolution of one- and two-quarters-ahead forecasts from SPF; The

bottom panel shows two measures of the six-months-ahead forecasts from Livingston. The black lines show

median predictions, while the gray area measures the 95% credible interval; the red and blue dots denote

survey-based forecasts. Finally, the thin gray line measures CPI inflation.
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2015Q4); Consensus Economics (1989Q4-2105Q4).

Long-term inflation expectations. Figure 2 shows model-predicted long-term infla-

tion expectations with corresponding survey data. The survey data are given by the red and

blue dots in the upper panel, which correspond to the five-to-ten- and one-to-ten-year-ahead

forecasts. When multiple surveys are available for the same forecast the figure reports the

average forecast across surveys. The solid black line in the top panel measures the me-

dian prediction for the five-to-ten-year-ahead expectation, while the gray areas denote the

70% and 95% credible sets; the dashed black line shows the median prediction for the one-

to-ten-year-ahead forecast. The proximity of the two model-generated long-term forecasts

underscores the low-frequency movement in inflation is for the most part driven by the drift

π̄t. The model captures well the evolution of long-term forecasts. The credible sets are

fairly tight, especially beyond the 1970s, and the survey-based forecasts largely lie within

the 70% credible set. More broadly, the model captures the mild increase in expectations in

the mid-seventies; the surge up to the early 1980s; the gradual decline through to the 1990s;

and the stabilization in the 2000s, which persists beyond the crisis period.

The results are consistent with contemporary narratives of US monetary history. The

pattern of short-term forecasts, in the middle panel of Figure 1, shows that starting in the

early 1970s firms faced persistent positive inflation surprises, leading to poorly anchored

inflation expectations, and a switch to a constant gain illustrated in the bottom panel. The

constant-gain regime lasts until the mid-1990s, because of persistent negative surprises, ini-

tially during the Volcker disinflation, and, subsequently, the disinflation in the early 1990s

under Greenspan. Since the late 1990s, conditional on observed inflation and short-term

forecasts, the 95% credible set excludes a switch to a constant-gain regime, despite occa-

sionally large forecast errors. Indeed, from Figure 1, these forecast errors are of a similar

magnitude to those observed over the 1970s and 1980s. However, the pattern of forecast

errors is crucially different: they were not as persistent and, therefore, did not generate large

enough deviations in (15) to lead to a drift in inflation beliefs. The model therefore provides

a rationale for the observed stability of expectations during this period which include sizable

shocks like the 2008 recession.23

Endogenous inflation trend and monetary policy. The relative stability of the

persistent component of inflation has been the basis of much recent skepticism about models

23The result that long-term expectations have been stable over the past decade does not appeal to any
informational friction predicting inertia in belief updating. The results show that reported survey inflation
expectations represent a coherent view of actual inflation developments — not simply mechanical reportage
of central bank inflation objectives. Long-term forecasts adjust significantly only in response to systematic
and sufficiently large forecast errors. Once again: the fact that expectations are anchored in itself affects the
size of forecast errors — the stability of expectations arises endogenously in this model. The counterfactuals
in Section 6 further clarify this point.
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Long-Term Expectations

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
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Learning Gain
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Figure 2: Predictions: Professional Forecasters.

The top panel shows the evolution long-term expectations at five-to-ten-year (5-10Y) and one-to-ten-year

(1-10Y) horizons. The black lines show median predictions, while the gray area measures the 70% and

95% credible intervals; the red and blue dots denotes survey-based forecasts. The bottom panel shows the

evolution of the learning gain.
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relating inflation to measures of economic slack, such as the Phillips curve in its various

forms.24 But our analysis is entirely consistent with time variation in the sensitivity of

inflation to economic activity. The weak link between shocks and inflation dynamics during

the financial crisis period is because inflation expectations are anchored. Conversely, the

large and persistent shocks realized over the 1970s and 1980s produced sizable effects on

inflation because they led to unanchored expectations. Beliefs transmit these shocks to the

persistent component of inflation, creating a strong link between real activity and prices.25

Prior accounts of the low-frequency movements in inflation, typified by the Great Infla-

tion, rely on purely exogenous specifications of the inflation drift — see, for example, Smets

and Wouters (2003), Cogley and Sbordone (2008) and Cogley, Primiceri, and Sargent (2010).

While Kozicki and Tinsley (2005) and Ireland (2007) permit more general specifications in

which the drift is determined in part by identified disturbances, such as supply shocks, the

specification remains exogenous. These papers interpret low-frequency movements as the re-

sult of variation in preferences over inflation outcomes. Higher inflation in the 1970s reflects

the Federal Reserve’s rising tolerance for inflation. In contrast, because the drift is endoge-

nous in our account, the Great Inflation arises despite the Federal Reserve’s commitment

to price stability.26 In this way the paper has much in common with Sargent (1999) and

Primiceri (2005), which emphasize learning by policy makers rather than price setters.

More generally, the endogeneity of the inflation trend fundamentally alters impulse and

propagation mechanisms, with implications for policy design — see Eusepi and Preston

(2018b) for a recent survey. To give one pertinent example, Eusepi, Giannoni, and Preston

(2018) show in a New Keynesian model that optimal policy under un-anchored expectations

(large constant gain) exhibits history dependence and resembles optimal commitment under

rational expectations. But anchored inflation expectations (small constant gain) induce no

history dependence, as in the case of discretion under rational expectations.

5 Understanding the Endogenous Trend

The two defining features of the model are that beliefs and optimal pricing decisions combine

to generate self-referential dynamics, and the learning gain is state dependent. The following

counterfactuals isolate the contributions of each of these properties. All counterfactuals are

generated by simulating the economy using the posterior distribution of the model parame-

ters, and the smoothed distribution of initial states and structural innovations.

24See for example Hall (2011).
25Del Negro, Giannoni, and Schorfheide (2015) provides a similar argument in a medium-size DSGE model,

where long-term inflation expectations evolve exogenously.
26 Eusepi and Preston (2018a) provides evidence for a related belief structure, in an empirical medium-scale

general equilibrium model of the US economy.
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The role of self-referential beliefs. Long-term inflation expectations are a state

variable that engender low-frequency movements in inflation: through optimal price setting,

shifts in beliefs affect inflation which, in turn, shapes beliefs. This produces substantial

variation in beliefs for certain sequences of forecast errors. Importantly, low-frequency drift

in beliefs is directly related to episodes of poorly anchored inflation expectations.

To illustrate this connection, we run the following counterfactual simulation. Assume

strict inflation targeting, Γ = 0, which eliminates the feedback from beliefs to actual inflation.

Furthermore, assume firms update their estimates of π̄t using a constant-gain algorithm

in all periods, so that θ = 0. Long-run beliefs are therefore quite sensitive to inflation

surprises, even though we show in section 6 that this would not have been optimal. The

top panel in Figure 3 shows the median prediction for the agents’ long-term expectations

(solid black line) together with the 95% credible interval in this counterfactual economy.

Also shown are the long-term survey forecasts, together with the 95% credible set from the

predicted long-term inflation expectations of the baseline model (light green). Even with

the assumed high responsiveness to inflation surprises, inflation expectations exhibit limited

drift. Absent feedback effects, inflation expectations fluctuate very little. This illustrates

how the sensitivity of inflation to disturbances can vary over time, depending on general

equilibrium effects from belief updating, price setting and the policy regime. Drift in inflation

is not the mechanical outcome of a specific choice of learning algorithm.

The role of timing of switching beliefs. How important is the timing of switches in

the forecasting algorithm? Can beliefs that are relatively insensitive to new information be

counterproductive from the perspective of a central bank trying to engineer a disinflation?

Long-term inflation expectations plateau briefly at around 4% in the late 1980s, before

continuing to decline. Suppose at this time agents become convinced the observed decline in

inflation represents the end of the Federal Reserve’s commitment to disinflation. Believing

inflation to be close to its time-invariant mean, firms switch to a decreasing-gain algorithm

to construct forecasts. The middle panel in Figure 3 shows this counterfactual. In this

scenario, long-term inflation expectations decline very slowly and remain above 3% at the end

of 2015. Again, self-referential dynamics explain slow convergence. Because beliefs display

less sensitivity to new information, negative inflation surprises lead to smaller downward

revisions in long-term inflation expectations, which results in actual inflation declining more

gradually. This hinders the ability of firms to learn the true underlying inflation mean.

To gauge the importance of these self referential effects we run an additional experiment.

Assume now inflation expectations for all firms are updated using a constant gain, so that

inflation evolves exactly as in the baseline model. Now suppose a measure-zero firm updates

their beliefs using a decreasing-gain algorithm. In contrast to the previous simulation, the
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measure-zero agent faces a data-generating process which has inflation declining much faster.

Moreover, their own expectations do not feed back into actual inflation outcomes. The dashed

black line demonstrates the evolution of this firm’s inflation expectations. Despite using a

decreasing-gain algorithm, when there is no self-referentiality inflation expectations converge

noticeably faster, falling below 3% by 2005 as compared to 2015. The stickiness of inflation

expectations is a general equilibrium outcome.

Stable expectations: “well anchored” or “good luck”? From the early 2000s long-

term inflation expectations are very stable. This stability reflects neither inattention nor

inertial adjustment on the part of professional forecasters. Similarly, it does not reflect good

luck from favorable disturbances. Indeed, large forecast errors arising from substantial energy

and commodity price changes, and the events of the financial crisis underscore anchored

expectations are not simply the result of a stable underlying inflation process. Rather, the

stability of long-term expectations is due to the relatively small, and decreasing, learning

gain, a dividend of well-anchored inflation expectations. What if firms remained skeptical

of the Federal Reserve’s commitment to price stability, and never switched to a decreasing

gain in the mid-to-late 1990s? With the US economy experiencing the same shocks as in

the baseline model, the bottom panel of Figure 3 demonstrates inflation under constant-gain

learning would have exhibited substantial volatility. In contrast to the baseline prediction,

long-term inflation expectations would have been very uncertain, with the credible interval

ranging from 0.5% to 4%. In addition, toward the end of the sample, the model’s predictions

imply some downside risk to inflation expectations, accompanied by median predictions

trending below 2%.

6 Monetary Policy and Bounds on Irrationality

The learning algorithm depends on two parameters. This section demonstrates these param-

eters satisfy a lower bound on rationality — agents cannot hold beliefs that are implausible.

As a corollary, it shows that more aggressive monetary policy toward inflation weakens the

link between short-term inflation surprises and long-term inflation expectations, delivering

more strongly anchored beliefs.

Asymptotic convergence. A reasonable requirement of a theory of long-term expec-

tations is that firms can learn the inflation target in a stationary environment. The estimate

π̄t should converge to zero, the rational expectations equilibrium, with probability one.27

Suppose firms construct forecasts using a recursive least-squares algorithm. Using standard

results in Marcet and Sargent (1989) and Evans and Honkapohja (2001) we have the following

27Formally, we consider a log-linear approximation in the neighborhood of price stability (zero inflation).
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Figure 3: Counterfactuals: Endogenous Inflation Trend

The three panels show the predicted behavior of long-term expectations under alternative counterfactual

simulations described in the main text. The black line denotes median predictions; the gray area shows the

95% credible interval in the counterfactual; the green lines show the 95% credible interval under the baseline

model; the blue and red dots measure long-term forecasts from surveys.
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result.

Result 1. Consider the equilibrium evolution of π̄t under least-squares learning. Provided

Γ < 1, then P (π̄t → 0) = 1.

A formal proof can be found in Evans and Honkapohja (2001). Here we offer a heuristic

argument. Recall from (19)

π̄t+1 = π̄t + t−1 × [(1− γ) (Γ− 1) π̄t + ηt] .

The mean dynamics are then approximated by the ordinary differential equation

˙̄π = (1− γ) (Γ− 1) π̄

which is (globally) stable, provided Γ < 1.

This asymptotic result establishes the local stability of the inflation target: so long as

initial beliefs are sufficiently close to the true long-run mean of inflation, given enough data

firms can learn the objective of the central bank. Now consider the properties of beliefs

under a constant-gain algorithm.

Result 2. Consider the evolution of π̄t under constant-gain learning. Provided

|1 + ḡ (1− γ) (Γ− 1)| < 1

then π̄t evolves according to an auto-regressive process of order one, with mean 0.

To see this, from (19), the dynamics of the inflation drift satisfy

π̄t+1 = [1 + ḡ (1− γ) (Γ− 1)] π̄t + ḡηt

giving the statistical properties we desire if the condition of the result is met. Beliefs about

trend inflation are then ergodically distributed around the true long-run mean of inflation.

While we do not offer a formal proof of convergence, these two results are useful to build

intuition about convergence in our model. To frame the discussion, consider the following

experiment. Generate 50,000 simulations with each lasting 10,000 periods. In each simula-

tion, draw both initial conditions for agents’ estimate of the inflation mean and the entire

sequence of exogenous shocks. Figure 4 displays two statistics that establish firms eventually

learn the true model — that is, beliefs are anchored at the true inflation target. The top

panel shows in each period the fraction of simulations in which the gain is larger than the

minimum constant gain estimate from the parameter distribution in the empirical model.
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That is, the fraction of simulations in which agents still have a constant gain. This fraction

decreases monotonically over time and reaches a number close to zero by the end of the

simulation. The bottom panel shows the fraction of simulations where |π̄t| > 0.05. Again

this fraction decreases monotonically over time, implying long-run expectations converge to

the true inflation target.

To gain intuition, consider the economy when agents update using a decreasing gain.

From Result 1, for beliefs within the domain of attraction agents never switch forecasting

models and convergence occurs. However, sufficiently large shocks can induce switching. To

see this, equations (14) and (19) imply firms will use a decreasing gain algorithm if

∣∣[1 + t−1 (1− γ) (Γ− 1)
]
π̄t + t−1ηt

∣∣ < θ̄τ (21)

for some threshold θ̄ and defining τ = ση/ (1− γ) (1− Γ). For small values of t sufficiently

large shocks can lead to a switch to the constant gain algorithm, preventing convergence.

Under the constant gain the economy behaves as described in Result 2. Given that π̄t

fluctuates around zero (and so the criterion in 14 is zero), the mean of this process, firms

will switch to the decreasing gain model again with probability one. Importantly, the longer

agents adopt a decreasing gain the smaller the probability of escaping. From equation (21) it

is immediate that as the gain gets smaller the probability of receiving a shock large enough

to produce a switch decreases and vanishes as t→∞.28

Given sufficient data, firms will always learn the long-run mean of inflation.29 This

property distinguishes our model from various other contributions in the literature which seek

to study questions of central bank credibility, and, specifically, whether inflation expectations

are anchored or not. For example, Orphanides and Williams (2005) and Kozicki and Tinsley

(2005) develop models of central bank credibility in which agents must estimate the inflation

target using a constant-gain algorithm.30 While imperfect knowledge has implications for

monetary policy design, both models have the property that agents cannot ever learn the

time-invariant inflation target. More recently, papers such as Hommes and Lustenhouwer

28This is easier to see if we are willing to assume a finite bound, no matter how large, on the support of
the shock.

29Much of the literature on learning and monetary policy can be interpreted as models of central bank
credibility, and as answering the question of whether expectations are well anchored or not. As one example,
Eusepi and Preston (2010) provide theoretical results on central bank communication, showing certain types
of information ensure consistency of beliefs with monetary policy strategy — providing a well-defined notion
of anchored expectations — which improves stabilization outcomes of a given monetary policy framework.
However, such theoretical analyses, relying on asymptotic convergence results, do not provide an account of
dynamics when beliefs are poorly anchored.

30See also Lansing (2009); Hommes and Lustenhouwer (2015) for a model of central bank credibility with
heterogeneous expectations; and Bomfim and Rudebusch (2000) and Gibbs and Kulish (2015) for explorations
of the role of anchored expectations in the costs of disinflation.
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Fraction of economies with constant gain

Fraction of economies with |π̄t| > 0.05

Figure 4: Convergence.

Statistics on convergence properties of the model from 50,000 simulations over 10,000 periods, For each

simulation, we draw an initial estimate of the inflation target and the full sequence of exogenous shocks.

(2015) explore similar questions in a model of heterogeneous beliefs and predictor selection.

While the composition of predictors is endogenous to the environment, the model nonetheless

has the property that the ergodic distribution of beliefs never converges to the central bank’s

inflation target.

Optimality. The second lower bound on rationality is given by a criterion proposed by

Marcet and Nicolini (2003). We show that within the adopted class of learning algorithm

beliefs are in a certain sense optimal. Specifically, conditional on a data-generating process

where all firms learn using parameters (ḡ, θ) , an individual choosing a potentially different

parameter pair (ḡ′, θ
′
) should not produce much better forecasts than the parameters (ḡ, θ)
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according to a mean-squared error criterion. Formally, the choice of beliefs must satisfy

Ē
[
ft
(
ḡ, θ
)]2 ≤ min

ḡ′,θ
′
Ē
[
f ′t

(
ḡ, θ, ḡ′, θ

′
)]2

+ ε

for some small ε > 0. We approximate the above moments using the mean-squared error

from a sample of size T , averaged over S replications, where each replication represents a

simulation of the model at the modal estimates. Consistent with the sample size in esti-

mation, take T = 264, and S = 200, 000. This is done for all candidate beliefs on a grid

covering the interval ḡ ∈ [0.001, 0.3] and θ ∈ [0.001, 0.1].

Figure 5 shows the ratio of the mean-squared errors of the counterfactual beliefs relative

to the baseline model, as a function of
(
ḡ′, θ

′
)

in two different economies.31 Numbers greater

than unity imply the baseline parameters are optimal. The top panel provides the results for

the estimated model. The estimated parameters
(
ḡ, θ
)

are optimal, with other forecasting

models exhibiting a deterioration in performance. There is no incentive to deviate from these

beliefs. This is explained by the high degree of self-referentiality in the system. Because

movements in beliefs are in large part reflected in the data, it is optimal to maintain those

beliefs. Indeed, the bottom panel shows the same exercise in a counterfactual economy

exhibiting substantially less feedback than at the mode: Γ = 0.4. As discussed in section 2,

a more aggressive policy towards inflation lowers Γ. As a result, an individual firm would

find it desirable to adopt a lower value of the gain and a higher switching threshold. This

shows how the expectation formation mechanism is not independent of policy. A more

aggressive policy toward inflation endogenously lowers the sensitivity of long-term inflation

expectations to short-term surprises and, with that, limits the drift observed in inflation.

7 Model Comparison

We now offer a formal assessment of model fit, comparing its predictive likelihood against

three alternatives: the rational expectations version of our baseline model where π̄∗t = 0 in

every period; a model where beliefs are updated using a constant-gain algorithm — equivalent

to setting θ = 0 in our baseline model; and a model where π̄∗t evolves exogenously according

to the auto-regressive process

π̄t+1 = ρπ̄π̄t + επ̄t

31To better visualize the result, the Figure shows a smaller set of parameter values relative to the size of
the grid used in the simulation. The result, however, holds for all parameters in the grid.
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Figure 5: Optimal choice of θ and ḡ

These panels show the ratio between the mean-squared error from predictions of a measure-zero agent using

alternative values of θ and ḡ and that from the representative agent using modal estimates. The true data-

generating process is obtained assuming agents use the modal estimates. The top panel assumes the feed

back parameter Γ at the mode; the bottom panel assumes Γ = 0.4.
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where the innovation is independent of the structural shocks in ηt. As a statistical descrip-

tion of inflation, this final class of models has been studied in a range of contexts, includ-

ing reduced-form, partial equilibrium and general equilibrium analyses [Smets and Wouters

(2003), Stock and Watson (2007), Cogley and Sbordone (2008), Cogley, Primiceri, and Sar-

gent (2010), Del Negro, Giannoni, and Schorfheide (2015) and Mertens (2016)]. These papers

have in common a highly persistent inflation trend, with auto-regressive coefficient in the

neighborhood of, or equal to, unity. In the subsequent exercise we set ρπ̄ = 0.99.32 Because

the process for the inflation trend is exogenous, we set Γ = 1 in (19).

Following Del Negro and Eusepi (2011), we evaluate how these models, estimated to fit

inflation and short-term survey forecasts, perform in predicting long-term inflation expecta-

tions. To achieve this we compute the predictive likelihood

p
(
yLT |yST ,Mj

)
=

∫
p
(
yLT |yST ,Θ,Mj

)
p
(
Θ|yST ,Mj

)
dΘ

= p
(
yLT , yST |Mj

)
/p
(
yST |Mj

)
where yLT includes the two series measuring long-term inflation expectations shown in Fig-

ure 2: the five-to-ten- and one-to-ten-year inflation forecasts. The vector yST includes CPI

inflation and all the short-term survey forecasts used in the estimation of the baseline model.

Finally Θ contains the estimated parameters in each model. This vector includes two ad-

ditional measurement errors associated with the long-term forecasts.33 The predictive like-

lihood measures the fit of long-term inflation expectations conditional on the parameter

distribution delivering the best fit of both short-term inflation expectations and inflation. In

other words, we evaluate each model’s fit of long-term expectations by using as a prior the

posterior parameter distribution obtained using only short-term forecasts and inflation. As

shown above, it can be computed by taking the ratio of the marginal likelihoods resulting

from estimating the model using two different data sets: one including (yST ), and the second

additionally including long-term forecasts, (yST , yLT ).

Table 2 compares the marginal and predictive likelihood for the baseline model and

the three alternative models. The baseline model performs best. Figure 6 gives intuition.

The three panels show the predictive density for each alternative model (estimated using

only short-term forecasts), compared to the survey-based long-term expectations and the

median predictions from the baseline model. The rational expectations model gives the worst

predictive likelihood, fails to deliver the large increase in long-term expectations during the

32This choice is consistent with a range of papers in the literature.
33We set the standard deviation of both measurement error innovations to 0.15.
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ln p(Y ST
1,T ) ln p(Y ST

1,T , Y
LT

1,T ) ln p(Y LT
1,T |Y ST

1,T )

Dataset Dataset
without with

LT Expectations LT Expectations

(1) (2) (2) - (1)

Baseline -567.68 -677.97 -110.29

Rational Expectations -588.51 -727.34 -138.83

Constant Gain -571.43 -686.66 -115.23

Exogenous π∗t -579.44 -698.55 -119.11

Note: The table shows the the log-marginal likelihood for the four alternative models. The first column

corresponds to the case where long-term expectations are not used in the estimation, while the second

column shows the marginal likelihood when long-term expectations are added to the data set. Finally, the

third column shows the predictive likelihood for each model.

Table 2: Model Comparison

1970s and 1980s, and predicts excessively volatile expectations in the 2000s. The constant-

gain model performs well until the mid-2000s and then produces a countefactual run-up in

inflation expectations in the mid-2000s. Finally, the model with exogenous inflation mean

under-predicts long-term inflation expectations in both the 1980s and 1990s, and produces

excessively volatile expectations in the 2000s. The estimated volatility of the innovation to

the inflation drift is the result of a trade-off between fitting the large variations in the inflation

trend during the first part of the sample with the stability in the latter part. As shown by

Mertens (2016), for example, even higher-dimensional models with an exogenous inflation

trend which use several measures of inflation and economic activity in the estimation present

similar shortcomings in fitting long-term inflation forecasts.

8 Learning and model uncertainty in real time

To allay concern about the use of the true data generating process in our learning algorithm,

we provide two robustness exercises. The first shows that our criterion is consistent with

the implications of a recursive statistical test. The second shows a learning algorithm which

continuously updates the learning gain fails to capture key features of the data.

Detecting structural change. This section provides a structural interpretation of how

agents update their model in real time. We assume firms assess the stability of the long-run

inflation mean by conducting a sequential test on their model’s forecast errors, ft. This
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Figure 6: Model Comparison

The three panels show three alternative models estimated on the same observables as our baseline model.
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corresponds to the sequential LM test in Cho and Kasa (2015). The test is based on the

recursive estimate of the regression constant, similar to the well-known CUSUM of squares

test of Brown, Durbin and Evans (1975). The aim is to detect a shift in the mean of inflation

from a volatile signal, as described in equation (16). To this end, agents employ a test based

on the statistic f 2
t /ωt, where ωt is a recursive estimate of the variance of the forecast error

implied by firms’ forecasting model

ωt = ωt−1 + κk−1
t−1

(
f 2
t − ωt−1

)
.

Allowing for discounting of past data, agents evaluate the model using a recursively

estimated statistic

θt = θt−1 + κk−1
t−1

(
f 2
t /ωt − θt−1

)
where 0 < κ < 1.34 The introduction of the parameter κ permits the test statistic to be

revised at a different rate than firms’ estimates of the long-run inflation rate. The null

hypothesis of a constant inflation mean is rejected if the statistic θt crosses a threshold

θ̃. When firms cannot reject a constant mean, they forecast inflation by using a recursive

least-squares algorithm (decreasing gain). When the test indicates the mean has shifted,

they switch to a constant-gain algorithm, permitting tracking of structural change. The

evolution of the time-varying learning gain can then be written

kt+1 = I(θt≤θ̃) × (kt−1 + 1) +
(

1− I(θt≤θ̃)
)
× ḡ−1

where I is an indicator function.

Cho and Kasa (2015, 2017) propose an alternative model-validation procedure. Suppose

there are two forecasting models, as in our application, one with a time-invariant mean, and

one with with drifting, random-walk, coefficients. The mean in the former is estimated using

a Kalman filter with decreasing gain, and in the latter using a constant gain. Both models

are revised in real time using using all available data. However, at any point in time, only

one model is used for forecasting, and this same model is used until rejected by a statistical

test of the kind developed above. When rejected, the alternative model is adopted with some

probability.

The testing strategy used here is closer to Marcet and Nicolini (2003) and Milani (2014)

and differs from Cho and Kasa (2015, 2017) in an important way. In our model agents

entertain the possibility that the policy regime might experience a sudden change. Their

forecast selection mechanism assumes that the policy environment might be changing over

34See Cho and Kasa (2015) for a detailed discussion of these recurisve tests.
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time. When agents switch back to a decreasing-gain algorithm, the initial learning gain is

reset to a value equal to the constant gain. This choice reflects the fact that, while agents

believe the inflation mean constant under the current regime, it might not have been in

the past. Consequently, they discount older observations. In Cho and Kasa (2017) agents

estimate the model with constant parameters using the full sample, whether it is adopted

or not. For example, under the null of a constant mean the model gives equal weight to all

data. This reflects the assumption that agents believe there exists only one fixed regime.

We don’t estimate the model because this implementation of sequential testing breaks

conditional linearity and because the number of nonlinear state variables increases by two.

We instead calibrate the parameters (κ, θ̃) and initial conditions (θ0, ω0) by simulating the

model using the distribution of smoothed states obtained in the baseline estimation. For

each path of the smoothed shocks, the parameters are chosen to minimize the distance

between the sequential testing model and our baseline predictions for the learning gain and

the estimate of the long-run mean of inflation. Using the resulting distribution of parameters

(one for each of the paths drawn), if we can replicate our benchmark results we have a proof

of concept: there exists a sequential statistical test consistent with our criterion.

Consistent with agents detecting low-frequency developments in volatile environments,

the calibration reveals statistics are computed with very little discounting of old data. The

gain κ is small, in the range 0.01 − 0.06. The threshold θ̃ ranges from 0.6 (5th percentile)

to 0.90 (95th percentile). The top panel of Figure 7 shows the model predicts the evolution

of inflation expectations is nearly identical to our baseline results. The middle panel shows

the statistic θt increases in the 1970s until the mid 1990s and then declines. Interestingly,

the bottom panel shows the estimated volatility of forecast errors is relatively flat until the

1990s and then declines markedly — not too different from the volatility estimates of Cogley

and Sargent (2005).35 We interpret these results as providing evidence that our criterion

provides meaningful detection of model mis-specification.

Continuous updating of the learning gain. A key feature of the learning algo-

rithm we assume is the discontinuous nature of the changes in the learning gain. If firms

doubt the forecasting performance of their model, they switch to a constant-gain algorithm,

potentially leading to a substantial change in the degree of sensitivity of long-run beliefs

to new information. Such adjustments afford flexibility to adapt to shifting economic cir-

cumstances. To evaluate the role of the discontinuity, we consider an alternative real-time

estimator of the long-run mean of inflation, where the learning gain is also state dependent.

The adaptive-step-size algorithm proposed by Kushner and Yin (2003) permits the learning

gain to be adjusted continuously, leading to a more gradual adjustment in the sensitivity of

35See also Lansing (2009).
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Inflation expectations

Test statistic: θt

Volatility: ωt

Figure 7: Model selection in real time.

The top panel shows the predicted behavior of long-term expectations. The black line denotes median

predictions; the gray area shows the 95% credible interval; the green lines show the 95% credible interval

under the baseline model; the blue and red dots measure survey forecasts.The remaining two panels show

the median and interquartile range for the evolution of the test statistic θt and the recursive estimate of the

forecast errors’ variance ωt.
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Adaptive-step-size Algorithm: inflation expectations
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Figure 8: Adaptive-step-size-algorithm.

The top panel shows the predicted behavior of long-term expectations under the alternative learning model.

The black line denotes median predictions; the gray area shows the 95% credible interval; the green lines

show the 95% credible interval under the baseline model; the blue and red dots measure long-term forecasts

from surveys. The bottom panel shows the median (black line) and the interquartile range for the evolution

of the learning gain.

long-run beliefs to short-term surprises. This algorithm was first used in macroeconomics by

Kostyshyna (2012) in the context of the hyperinflation model of Marcet and Nicolini (2003).

The algorithm for the learning gain gt is

gt = G (gt−1 + νft−1Vt−1)

Vt = (1− gt−1)Vt−1 + ft−1, given V0.
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The variable Vt measures discounted past forecast errors, ft; and the function G (·) satisfying

G (gt−1 + νft−1Vt−1) =



gt−1 + νft−1Vt−1, if g− < gt−1 + νft−1Vt−1 < g+

g+, if g+ < gt−1 + νft−1Vt−1

g−, if g− > gt−1 + νft−1Vt−1.

The parameter ν now captures how the learning gain is adjusted in response to past forecast

errors. The bounds g+ and g− ensure that the algorithm is well behaved.36 When the current

forecast error, ft, has the same sign as discounted past errors, Vt, the gain increases. This

has similar intuition to our baseline algorithm: the gain changes in response to persistent

forecast errors of the same sign. Figure 8 shows outcomes of the same calibration as described

above, where the parameter ν and initial conditions (g0, V0) are calibrated to minimize the

distance between this model’s predictions for π̄t and its evolution in our baseline.

The top panel demonstrates expectations fail to track the survey data, and are substan-

tially more volatile in the latter part of the sample. The bottom panel reveals the source

of difficulty is that the gain coefficient rises in the 1970s, but fails to decline much at all

after 1980. This counterfactual adduces evidence that our threshold algorithm is better able

to capture the relation between long-term expectations and short-term surprises, relative to

algorithms which continuously update the gain. A primary reason for this shortcoming is

that negative forecast errors after 1980 display smaller size compared to the positive errors

in the 1970s — recall figure 1. As a result, the increase in the gain cannot be fully reversed.

9 Predicting other Long-term Forecasts

This final section demonstrates the basic belief structure provides a good characterization of

other survey data of inflation expectations. The parameter distribution is chosen to match

the joint behavior of US inflation and short-term professional forecasts. We now document

evidence supporting the proposed theory of belief formation for different types of economic

agents (households rather than professional forecasters), and for a range of different countries.

9.1 Household Expectations

The Michigan Survey has collected data on short-term inflation forecasts since nearly the

beginning of our sample, and on long-term forecasts since 1975. Despite the long sample,

36In the numerical analysis that follows they are set to g+ = 0.6 and g− = 0.01 and the estimate for ḡ
never reaches these boundaries.
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the survey presents some challenges. First, in contrast with professional surveys, short-term

forecasts are measured as one-year-ahead forecasts, so we can measure quarterly inflation

surprises only indirectly. Second, survey participants are not asked to forecast a specific

price index. In what follows we therefore continue to use CPI as our measure of inflation,

acknowledging this is only a noisy measure of the underlying inflation rate about which

households form expectations.37 Third, short-term inflation forecasts display a substantial

upward bias in the last fifteen years when compared to CPI inflation. To avoid modeling

this bias directly, we mitigate the problem by using median forecasts, instead of the mean.

Furthermore, following the finding of Coibion and Gorodnichenko (2012) that the difference

between professional forecasters and Michigan forecasts is related to oil prices, we purge the

bias by regressing the difference between short-term professional and household forecasts on

oil prices. Our measure of household expectations is then given by the sum of the survey of

professional forecasts data and the residual from the regression.38

With these limitations in mind, the observation equation for household expectations is[
πt

EMich
t

(
1
4

∑4
i=1 πt+i

) ] = π∗ +H ′tξt +Rtot.

The observation error on inflation now additionally captures the discrepancy between the

CPI and the survey participants’ notion of the inflation measure being predicted. We then

use the posterior distribution from the baseline model using professional forecasts to infer an

estimate of household beliefs about trend inflation. That is, conditioning on CPI inflation

and the Michigan Survey short-term inflation expectations, we predict household long-term

expectations. We assume the measurement error on inflation and the short-term forecast

correspond to those estimated for inflation and the one-period-ahead professional forecast

in the benchmark estimation. These assumptions are inconsequential given the small size of

estimated measurement errors.

Figure 9 shows the model predictions for the five-to-ten-year-ahead expectations, along

with the corresponding Michigan survey forecasts. The pattern matches broadly that for

professional forecasters, adducing complementary evidence to Malmendier and Nagel (2016)

that adaptive learning structures provide a reasonable description of household forecasts.39

However, there are differences. First, the middle panel shows the evolution of one-year-

ahead forecasts for both households (red dots) and professional forecasters (blue dots).40

37Note that measurement error on CPI inflation can at least partially address this data limitation.
38The transformed and un-transformed measures are shown in the technical appendix.
39Malmendier and Nagel (2016) exploit the cross-section providing evidence that different age-cohorts use

different constant gains to form inferences about future inflation.
40These are computed using the median response from the Livingston survey. A similar pattern obtains if
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Figure 9: Predictions: Households Forecasts.

The panels show model predictions for long-term forecasts (top), short-term forecasts (middle) and the

learning gain (bottom). The black solid (dashed) line denotes the median prediction; the gray area measures

the 70% and 95% credible intervals; in the top panel, the red (green) dots indicate long-term survey forecasts

from the Households Michigan survey (Professional forecasters); Finally the green solid line in the top panel

shows the mean prediction from the baseline model
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Interestingly, household forecasts decline more sharply than professional forecasts from the

early 1980s to the early 1990s. As a result, the model on average predicts a lower path for

long-term inflation expectations. In fact, over the same period long-term household forecasts

from the Michigan survey (red dots) are consistently below professional forecasts (green

crosses). In line with the pattern of short-term forecasts, household and professional long-

term expectations move in sync during the 1990s. Second, while the median prediction is that

expectations remained anchored in the aftermath of the financial crises, model predictions

are more uncertain than for professionals: the model attributes a substantial probability to

long-term expectations not being fully anchored during that period. This is consistent with

the temporary increase in household long-term forecasts during the crisis.

More generally, the model predictions depart from observed expectations in two dimen-

sions. First, the model falls short of capturing the sharp increase in expectations in the late

1970s, suggesting other factors beyond observed inflation surprises triggered such a large

spike. Second, while the predicted long-term forecasts mimic reasonably closely the varia-

tion in long-term survey forecasts, by the end of the sample the model predicts long-term

expectations to be somewhat below realized forecasts on average. This discrepancy can be

traced to the role of oil prices in affecting Michigan Survey forecasts since the late 1990s.

Indeed, the model can be used to gauge to what extent changes in energy prices have shifted

long-term inflation expectations. Recall the short-term inflation forecasts have been cor-

rected for the influence of oil price movements, but not the long-term forecasts. Conditional

on the model being right, the difference between model predictions and the corresponding

survey data therefore measures the effects of oil on long-term survey forecasts. We can then

conclude that the effects of oil prices on average long-term forecasts over the 2000s are not

particularly large.

9.2 Professional forecasts: other countries

The sample of international data comprises the following countries: France, Germany, Italy,

Spain, Japan, Canada, Switzerland and Sweden. Inflation expectations are measured using

data available from Consensus Economics. While the Consensus Economics data set includes

short-term and long-term professional survey forecasts for a wide set of countries, it presents

two challenges for estimation. First, forecasts in this data set are made on a year-over-year

basis. As for the Michigan Survey, this formulation prevents a clean identification of the

mechanism of the model, which links one-step-ahead forecast errors to the beliefs about

long-term inflation, π̄t. Second, in contrast with the US forecast data, for most countries

expectations data are only available from 1991, providing a limited time series for estimation.

the SPF are used, but the sample is shorter.
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The following discussion details how each of these complications is handled.

Mapping model concepts to the data. Estimation employs available Consensus

Economics inflation forecasts for the one- and two-years-ahead horizons. In contrast with

SPF forecasts which have a constant horizon, independently of when they are polled, in the

Consensus Economics data set the forecast horizon is shrinking in each quarter, and the target

forecast becomes progressively less uncertain towards the end of the year. Since forecast

horizons are different in each quarter, we have only one observation for each particular

forecast per year.

To map the data concept into the model concept, year-over-year forecasts can be approx-

imated as a weighted average of quarterly forecasts at different horizons, with tent-shaped

weights.41 For the estimation we use six sets of forecasts. The first two are forecasts for

the current year, made in the first and second quarter of the year. The remaining four

are forecasts for the next year made in each quarter of the current year. Common to all

these forecasts is most of the weight is given to quarterly forecasts ranging from one-to-four-

quarters ahead. Details on the observation equation can be found in the Appendix. Similarly

to the Michigan survey, these are reasonably interpreted as short-term forecasts. Figure 10

plots short-term forecasts with a horizon below one year and above one year respectively,

along with the CPI for each country. These forecasts are fairly close and respond to current

inflation developments.

Confronting a short sample. To handle the short available sample for the international

data (survey data are available only from 1991), which prohibits sharp identification of

the inflation trend using only CPI data (available from the mid-to-late 1950s), we employ

posterior information from the US model to shape the priors adopted in estimation for these

countries. In particular, the US posterior is used as a prior for all parameters except for the

steady-state inflation rate and all observation errors. For these parameters, we use the same

prior distributions as specified for the US. One final assumption is made. When simulating

the posterior distribution of foreign parameters, the foreign likelihood function is scaled by

the parameter λF so that

P F
(
ΘF |Y F

t , Y
US
t ,ΘUS

)
= L(Y ∗t |ΘUS,ΘF )λ

F

L(Y US
t |ΘUS)p(ΘUS)p(ΘF ).

Smaller values of the parameter λF imply model predictions are more closely tied to the

US posterior distribution. The presented results consider the case λF = 0.05. This weight

delivers a posterior distribution of the common parameters that is extremely close to the

distribution for the US model, while gaining some information about country-specific mean

41See Crump, Eusepi, and Moench (2015) for a discussion.
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Figure 10: Short-Term Surveys: OECD countries

These panels show the evolution of CPI inflation and short-term survey forecasts. The green line and the

blue dots denote short-term survey forecasts of different horizons, from Consensus Economics.
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inflation rates and observation errors.42 This provides a clear test of the out-of-sample

forecasting power of the model estimated on US data.

Model predictions. Figure 11 presents model predictions for long-term inflation ex-

pectations.43 For each country the top panel provides the model-implied long-term inflation

forecast and 95% credible interval (the solid black line and gray band), along with the cor-

responding survey data (red dots). The dashed line provides the CPI inflation rate. The

bottom panel displays the estimated gain, along with 50%, 70% and 95% credible intervals.

We offer the following observations. First, the model characterizes the evolution of long-

term forecasts surprisingly well, despite model parameters being largely inferred from US

data. For most of the sample, the survey-based forecasts are inside the 95% credible set.

Second, while the precise timing differs, in general long-term expectations are more stable

from the early-to-mid 1990s, with the estimated median gain declining for all countries rel-

ative to the 1980s. Perhaps not surprisingly, long-term inflation expectations in Canada

follow similar dynamics to the US: the model places high probability on anchored expecta-

tions in recent years. However, several countries exhibit episodes in which expectations are

poorly anchored. For example, Germany and Spain experience a temporary rise in the esti-

mated gain after German reunification and during the Global Financial Crisis, respectively.

Also, Italy, Germany and France display a high degree of uncertainty about the size of the

gain during the crisis period, despite the median estimate being consistent with anchored

expectations. At the end of the sample, all of these countries show some downside risk to

long-term inflation expectations according to the 95% credible set.

Japan displays more prolonged periods of heightened sensitivity of long-term inflation

expectations to short-term forecast errors, especially in the latter part of the sample. This

is reflected in both the median estimate and also the 95% credible set which provides a

metric of the risks that long-term expectations are not well anchored. Despite several years

of deflation, both predicted and actual long-term inflation expectations remain above zero.

Moreover, they appear to revert to about 2% over the latter part of the sample. Similarly to

the US, this suggests the observed behavior of long-run expectations does not simply reflect

inertia in survey responses by forecasters; rather, it is consistent with the observed pattern

of surprises. Finally, Switzerland provides a second example of an economy for which our

model implies unanchored expectations. However, here the model predictions and observed

forecast data are in stark contrast, as survey-based long-term forecasts have remained fairly

stable despite persistent forecast errors.

42Details can be found in the appendix.
43The appendix documents the evolution of short-term expectations used for the estimation and prediction,

together with the results for two additional countries: Netherlands and Norway.
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This serves to introduce our final observation. The comparison between the model-

predicted paths and survey-based forecasts suggests that in some countries short-term fore-

cast errors might not have been the only determinant of long-term expectations. For exam-

ple, for much of the sample Japan had higher reported long-term inflation expectations than

predicted by the model. This possibly reflects various fiscal and monetary interventions im-

plemented to combat deflation over the period, or, more recently, concerns about long-term

fiscal sustainability. Sweden displays a faster decline in survey-based long-term forecasts

compared to model predictions in the early 1990s. This coincides with the announcement

and adoption of an inflation targeting regime in 1992 − 1995. And in the case of Switzer-

land, which displays the largest discrepancy over the final years of the sample, the Swiss

National Bank operated a formal exchange rate policy to limit appreciation of the Swiss

Franc. This might have granted the policy framework an independent source of credibility

despite short-term inflation behavior.

In each of these cases, announcement effects and other policy-related factors might have

plausibly shifted expectations beyond what is justified by short-term inflation forecast errors

alone. And in practice, it will almost certainly be the case that firms and other market

participants will condition long-term inflation forecasts on a range of information, not least

other indicators of the state of the macro-economy, such as short-term interest rates and

output. What is remarkable about our results, for both the US and other countries, is that

measures of short-term inflation expectations go a long way in explaining the dynamics of

long-term inflation expectations. They don’t explain everything, but they clearly have strong

predictive content for longer-term developments.

10 Conclusions

The introduction motivated our theory of anchored inflation expectations with three ques-

tions: Are inflation expectations anchored? Will chronic undershooting of inflation targets

lead to downward drift and un-anchoring of long-term expectations? How can we reconcile

large negative output gaps and stable inflation over the past decade, with positive output

gaps and high inflation in the 1970s? We now have answers. Expectations are anchored

when agents hold beliefs that are consistent with the policy strategy of the central bank.

Our empirical work adduces clear evidence that expectations were un-anchored prior to the

late 1990s. When agents doubt there is a constant inflation target, beliefs are un-anchored

and highly sensitive to forecast errors. This is the source of trend inflation. Doubt arises

from systematic forecast errors of either sign. In same way the chronic overshooting of in-

flation targets led to the unstable inflation expectations and the Great Inflation, chronic

undershooting may lead to un-anchoring and downward movement in long-term inflation ex-
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pectations. Finally, an implication of anchored long-term expectations is that large forecast

errors will not lead to mark-ups or mark-downs in long-term inflation expectations. The

different experiences of the 1970s and 2000s reflects the success of the Federal Reserve in

anchoring expectations, so that large output gaps and large inflation forecast errors had little

effects on inflation expectations.
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A Appendix (Not for Publication)

Here we present the marginalized particle filter and smoother. For ease of notation note that

we use ϕt for ϕ̃t, and (εt, µt) for (ε̃t, µ̃t) in the main text. Recall the model is summarized

by the following equations

πt = (1− γ) Γπ̄t + γπt−1 + ϕt + µt

π̄t = π̄t−1 + k−1
t × ft−1

kt = I(π̄t−1)× (kt−1 + 1) + (1− I(π̄t−1))× ḡ−1

ft = (1− γ) (Γ− 1) π̄t + µt + εt

ϕt = ρϕϕt−1 + εt,

where the function I(π̄t) is described as

I (π̄) =


1, if |(1− γ) (Γ− 1) π̄| ≤ θση

0, otherwise.

The model can then be re-written as

kt = fk(π̄t−1,kt−1)

π̄t = fπ̄(π̄t−1,kt−1) + fk(π̄t−1,kt−1)−1 × ηt−1

ηt = µt + εt

ϕt = ρϕϕt−1 + εt

πt = (1− γp) Γfπ̄(π̄t−1,kt−1) + (1− γp) Γfk(π̄t−1,kt−1)−1ηt−1

+γπt−1 + ρϕϕt−1 + εt + µt.
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where

fk(π̄t−1,kt−1) = I(π̄t−1)× (kt−1 + 1) + (1− I(π̄t−1))× ḡ−1,

fπ̄(π̄t−1,kt−1) =
[
1− (1− Γ) (1− γ) fk(π̄t−1,kt−1)−1

]
π̄t−1.

We can also re-write the system in matrix notation. One way to write it is by separating

linear and nonlinear states. For the linear variables we have:

ξt = fξ (π̄t−1,kt−1) + Aξ (π̄t−1,kt−1) ξt−1 + Sξ

[
εt

µt

]
,

where

ξt =

 ηt

st

πt

 ;

fξ (π̄t−1,kt−1) =

[
02×1

(1− γ) Γfπ̄(π̄t−1,kt−1)

]
;

Aξ (π̄t−1,kt−1) =

 0 0 0

0 ρϕ 0

(1− γ) Γfk(π̄t−1,kt−1)−1 ρϕ γ

 ;

Sξ =

 1 1

1 0

1 1

 .
For the nonlinear variables we can express

kt = fk(π̄t−1,kt−1)

and

π̄t = fπ̄(π̄t−1,kt−1) + Aπ̄ (π̄t−1,kt−1) ξt−1.

where

Aπ̄ (π̄t−1,kt−1) =

[
fk(π̄t−1,kt−1)−1

02×1

]′
.

Notice that kt does not depend on the linear state. In yet another formulation we can express

the system in more compact notation:
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kt = fk(π̄t−1,kt−1)

[
π̄t

ξt

]
= f (π̄t−1,kt−1) + A (π̄t−1,kt−1) ξt−1 +

[
0

Sξ

][
εt

µt

]

where

f (π̄t−1,kt−1) =

[
fπ̄(π̄t−1,kt−1)

fξ (π̄t−1,kt−1)

]

A (π̄t−1,kt−1) =

[
Aπ̄ (π̄t−1,kt−1)

Aξ (π̄t−1,kt−1)

]

and

Σ = E

[ εt

µt

][
εt

µt

]′
is the variance covariance of the innovations.

This notation is used below when computing the smoothed states. Finally, given the

data YT = y1...yT , the model observation equation is

yt = h0,t + hπ̄,tπ̄t +H ′tξt +R
1/2
t eot

where the vectors and matrices h0, hπ̄, H
′
t and Rt are defined to be consistent with the timing

of available data, and et denotes observation errors.

A.1 Algorithm for the Marginalized particle filter

This follows Schön, Gustafsson, and Nordlund (2005). For details of the particle filter we

use Kitagawa (1996). We are looking for the following distributions:

p (ξt, [π̄t,kt] |Yt) = p (ξt| [π̄t,kt] , Yt)× p ([π̄t,kt] |Yt) .

The following describes the algorithm. Discussion and proofs are given below.

Algorithm:

1. Initialization. Choose π̄
(i)
1|0, k

(i)
1|0 from some distributions (drawing from normal for π̄

and k
(i)
0|0 = k̄0 (or draw from U(0, ḡ−1)), and ξ

(i)
1|0, P

(i)
1|0 = [ξ0, P1|0], where P1|0 denotes the
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initial precision matrix in the linear Kalman filter.

2. For each t = 1...T , compute

Ωt = H ′tPt|t−1Ht +Rt

and its inverse. For i = 1, ..., N , evaluate the importance weights

q
(i)
t = p

(
yt|π̄(i)

t|t−1, ξ
(i)
t|t−1

)
.

In order to do this, use

p
(
yt|π̄(i)

t|t−1, ξ
(i)
t|t−1

)
= N

(
h0,t + hπ̄,tπ̄

(i)
t|t−1 +H ′tξ

(i)
t|t−1, H

′
tPt|t−1Ht +Rt

)
so that

q
(i)
t = w

(i)
t−1 × |Ωt|−1/2×

exp

{
−1

2

(
yt − h0,t − hπ̄,tπ̄(i)

t|t−1 −H
′
tξ

(i)
t|t−1

)′
× Ω−1

t ×
(
yt − h0,t − hπ̄,tπ̄(i)

t|t−1 −H
′
tξ

(i)
t|t−1

)}
.

where w
(i)
t−1 denotes the particle weight from the previous period. (In the expression above

we eliminate the constant coefficient that is independent of (i) and the model parameters.)

3. Re-sampling.44 Provided the number of effective particles (effective sample size),

computed as

ESS =
1∑(
w

(j)
t

)2 ,

falls below the threshold (ESS < 0.75 ∗N) we re-sample such that

p
([
π̄

(i)
t|t ,k

(i)
t|t

]
=
[
π̄

(j)
t|t−1,k

(j)
t|t−1

])
=

q
(j)
t∑
q

(j)
t

.

Here we use systematic resampling: see Kitagawa (1996), Hol, Schön, and Gustafsson

(2006) for a discussion of resampling and different methods. The outcome of systematic

resampling is a discrete distribution with particles
{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

and corresponding weights

wt(i) = 1/N for i = 1, ..., N . In case of not resampling the weights are wt(i) = q
(j)
t /

∑
q

(j)
t .

44This means (roughly speaking) increasing the number of particles receiving high weight

(
q
(j)
t∑
q
(j)
t

)
and

eliminating particles with very low weight, while keeping the number of particles equal to N .
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4. Linear measurement equation: for i = 1, ..., N , evaluate

ξ
(i)
t|t = ξ

(i)
t|t−1 +Kt

(
yt − h0,t − hπ̄,tπ̄(i)

t|t −H
′
tξ

(i)
t|t−1

)
Kt = Pt|t−1HtΩ

−1
t

Pt|t = Pt|t−1 −KtH
′
tPt|t−1

5. Particle filter prediction. For i = 1, ..., N , compute

k
(i)
t+1|t = fk(π̄

(i)
t|t ,k

(i)
t|t )

and then draw π̄
(i)
t+1|t from distribution

p
(
π̄t+1|Yt, π̄(i)

t|t ,k
(i)
t|t

)
= N

(
fπ̄(π̄

(i)
t|t ,k

(i)
t|t ) + fk(π̄

(i)
t|t ,k

(i)
t|t )
−1z

(i)
t|t , fk(π̄

(i)
t|t ,k

(i)
t|t )
−2P

[η,η]
t|t

)
where we use the notation: P

[x,z]
t|t = Pt|t (x, z).

6. Linear model prediction

ξ̃
(i)
t|t = ξ

(i)
t|t + K̃

(i)
t

(
π̄

(i)
t+1|t − fπ̄(π̄

(i)
t|t ,k

(i)
t|t )− fk(π̄

(i)
t|t ,k

(i)
t|t )
−1z

(i)
t|t

)
ξ

(i)
t+1|t = fξ(π̄

(i)
t|t ,k

(i)
t|t ) + Aξ(π̄

(i)
t|t ,k

(i)
t|t )ξ̃

(i)
t|t

Pt+1|t = Qξ + P̃t|t; Qξ = SξΣS
′
ξ;

where

K̃
(i)
t = Pt|tA

′
π̄

(
π̄

(i)
t|t ,k

(i)
t|t

)(
Aπ̄

(
π̄

(i)
t|t ,k

(i)
t|t

)
Pt|tA

′
π̄

(
π̄

(i)
t|t ,k

(i)
t|t

))−1

= fk(π̄
(i)
t|t ,k

(i)
t|t )

 1

P
[η,ϕ]
t|t /P

[η,η]
t|t

P
[η,π]
t|t /P

[η,η]
t|t

 ;
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and

Al(π̄
(i)
t|t ,k

(i)
t|t )K̃

(i)
t = fk(π̄

(i)
t|t ,k

(i)
t|t )


0

P
[η,s]
t|t

P
[η,η]
t|t

ρϕ

P
[η,π]
t|t

P
[η,η]
t|t

γ +
P

[η,s]
t|t

P
[η,η]
t|t

ρϕ + fk(π̄
(i)
t|t ,k

(i)
t|t )
−1 (1− γ) Γ



P̃t|t =


0 0 0

0 ι1 ι2 + ι1

0 ι2 + ι1 2ι2 + ι1 +

(
P

[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

)
γ2


where

ι1 =

P [ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

 ρ2
ϕ;

ι2 =

(
−
P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,η]
t|t

+ P
[s,π]
t|t

)
ρϕγ.

Notice that, importantly, Pt+1|t is independent of particles. This is key for a fast evaluation

of the likelihood.

Finally, the log-Likelihood is approximated by

L (·) =
T∑
t=1

log p (yt|Yt−1)

where

p (yt|Yt−1) = p (yt|ξt, [π̄t,kt]) p (ξt, [π̄t,kt] |Yt−1)

= p (yt|ξt, [π̄t,kt]) p (ξt| [π̄t,kt] , Yt−1) p ([π̄t,kt] |Yt−1) ,

→

L (·) '
T∑
t=1

log

(
N∑
i=1

q
(i)
t

)
.

Algorithm ends.

In the estimation performed in this paper we set the number of particles N = 2500; To
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avoid injecting randomness in the calculation of the likelihood, the “chatter” of changing

random numbers, we keep the simulated (standardized) innovations constant as we evaluate

different parameters—see the discussion in Fernandez-Villaverde and Rubio-Ramirez (2007).

In detail, we fix the following innovations: random initial conditions for the nonlinear state

variables; random draws to compute shocks in the nonlinear prediction step; and random

draws in the resampling step.

B Marginalized Smoother

We follow Lindsten and Schön (2013) using the ‘joint backward simulation’ Rao-Blackwellised

particle smoother. See also Godsill, Doucet, and West (2004). We compute a smoothed path

for the states, conditional on a parameter draw, for the sample t = 1...T . The algorithm, in

conjunction with the forward filter above, allows producing the full distribution of state and

parameters using Carter and Khon (1994).

The objective is to draw j = 1...M trajectories of the model variables
{

˜̄π
(j)
t|T , k̃

(j)
t|T , ξ̃

(j)
t|T

}T
t=1

.

The forward filter allows drawing ˜̄π
(j)
T |T k̃

(j)
T |T from the empirical distribution of

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

where each particle has weight w
(k)
t . Moreover, conditional on the draw ˜̄π

(j)
t|T , k̃

(j)
T |T , it allows

drawing the linear state ξ̃
(j)
T |T from the normal distribution N

(
ξ

(j)
T |T , PT |T

)
. Given this we

compute M paths as follows.

Algorithm:

For t = T − 1 : −1 : 1

For each j = 1...M

For each i = 1...N , compute

wjt|t+1(i) =
wt(i)p

(
˜̄π

(j)
t+1|t+1, k̃

(j)
t+1|t+1, ξ̃

(j)
t+1|t+1|π̄

(i)
t|t ,k

(i)
t|t , Yt

)
N∑
k

wt(k)p
(

˜̄π
(j)
t+1|t+1, k̃

(j)
t+1|t+1, ξ̃

(j)
t+1|t+1|π̄

(k)
t|t ,k

(k)
t|t , Yt

)
where the last line makes use of the fact that wt(i) = 1/N because of resampling in the

forward filter. The probability distribution above can be expressed as

p
(
π̄t+1|T ,kt+1|T , ξt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
=

p
(
π̄t+1|T , ξt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
× p

(
kt+1|T |π̄(i)

t|t ,k
(i)
t|t , Yt

)
,
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which uses kt+1|t = fk(π̄t,kt). We can then evaluate

p
(

˜̄π
(j)
t+1|T , ξ̃

(j)
t+1|T |π̄

(i)
t|t ,k

(i)
t|t , Yt

)
× 1

k̃
(j)
t+1=fk

(
π̄
(i)
t|t ,k

(i)
t|t

) =


pj,it|t+1, if k̃

(j)
t+1|T = fk

(
π̄

(i)
t|t ,k

(i)
t|t

)
0, otherwise

where

pj,it|t+1 = ∝ exp

{
−1

2
ln
(∣∣∣Ω̃(i)

t

∣∣∣)− 1

2

(
ηj,it+1

)′ × (Ω̃
(i)
t

)−1 (
ηj,it+1

)}

ηj,it+1 =

[
˜̄π

(j)
t+1|t+1

ξ̃
(j)
t+1|t+1

]
−
[
f
(
π̄

(i)
t|t ,k

(i)
t|t

)
+ A

(
π̄

(i)
t|t ,k

(i)
t|t

)
ξ

(i)
t|t

]
.

Ω̃
(i)
t = Q+ A

(
π̄

(i)
t|t ,k

(i)
t|t

)
Pt|tA

(
π̄

(i)
t|t ,k

(i)
t|t

)′

Q =

[
0 0

0 SξΣS
′
ξ

]
.

and where we can use

1
k̃
(j)
t+1=fk

(
π̄
(i)
t|t ,k

(i)
t|t

) =

1
k̃
(j)
t+1=ḡ

× 1∣∣∣(1−γ)(Γ−1)π̄
(i)
t|t

∣∣∣>θση +

+
(

1− 1
k̃
(j)
t+1=ḡ

)
×
(

1∣∣∣(1−γ)(Γ−1)π̄
(i)
t|t

∣∣∣≤θση
)
× 1

k
(i)
t|t=k

(j)
t+1|t−1

.

Moving to the linear variables ξt, for each j = 1...M , draw the nonlinear variables

˜̄π
(j)
t|T , k̃

(j)
t|T , from

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

using the new set of weights
{
wjt|t+1(k)

}N
k=1

. Conditional

on the draw, sample from

p
(
ξt|π̄j1:t,k

j
1:t, ξt+1, π̄t+1, Yt

)
.

In particular we draw ξ̃
(j)
t|T from the distribution

N

(
ξ

(j)
t|t + ∆

(j)
t

([
˜
π̄

(j)

t+1|T , ξ̃
(j)′

t+1|T

]′
− f

(
˜
π̄

(j)

t|T , ξ̃
(j)
t|T

)
− A

(
˜
π̄

(j)

t|T , ξ̃
(j)
t|T

)
ξ

(j)
t|t

)
,Λ

(j)
t|t

)
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where ξ
(j)
t|t is the element in

{
π̄

(k)
t|t ,k

(k)
t|t

}N
k=1

that corresponds to the same draw j from which

the particles ˜̄π
(j)
t|T , k̃

(j)
t|T are obtained, and where

∆
(j)
t = Pt|tA

(
˜̄π

(j)
t|T , k̃

(j)
t|T

)′(
Q+ A

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)
Pt|tA

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)′)−1

Λ
(j)
t|t = Pt|t −∆

(j)
t A

(
˜
π̄

(j)

t|T , k̃
(j)
t|T

)
Pt|t.

Algorithm ends.

C Estimation in other countries

Observation equation. The Consensus forecasts can be expressed as

ECons
t πY 1,Q2 =

4∑
j=1

w (j) πt−j + Êt

2∑
i=0

w (5 + i) πt+i

ECons
t πY 1,Q1 =

3∑
j=1

w (j) πt−j + Êt

3∑
i=0

w (4 + i) πt+i

where the vector

w =

(
1

16

2

16

3

16

4

16

3

16

2

16

1

16

)
defines the appropriate weights, and the notation πi,j denotes the inflation forecast of year

i inflation, taken in the current year in quarter j. The remaining four forecasts concern

expectations for inflation in the next calendar year, taken in each quarter of the current

year. Similarly they can be expressed as

ECons
t πY 2,Q4 =

2∑
j=1

w (j) πt−j + Êt

4∑
i=0

w (3 + i) πt+i

ECons
t πY 2,Q3 =

1∑
j=1

w (j) πt−j + Êt

5∑
i=0

w (2 + i) πt+i

ECons
t πY 2,Q2 = Êt

6∑
i=0

w (1 + j) πt+i

ECons
t πY 2,Q1 = Êt

7∑
i=1

w (j) πt+i
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where the last two forecasts are purely forward looking. The observation equation can then

be written 

πt

Êt
∑2

i=1w (5 + i) πt+i

Êt
∑3

i=1w (4 + i) πt+i

Êt
∑4

i=1w (3 + i) πt+i

Êt
∑5

i=1w (2 + i) πt+i

Êt
∑6

i=1w (1 + i) πt+i

Êt
∑7

i=1w (i) πt+i


= π∗,F +H ′tξt +Rto

Cons
t ,

where π∗,F denotes the country-specific sample mean of inflation.

As discussed in the main text, the aim is to evaluate model predictions under the posterior

distribution obtained with US data on inflation and forecasts by professional forecasters.

However, there are few parameters that we choose to estimate independently. In particular,

we estimate the inflation mean and the standard deviation of measurement error on survey-

forecasts. These parameters are necessarily country-specific and can impact significantly the

model’s predictions.

For the US, the Metropolis-Hasting algorithm is used to simulate the posterior distribu-

tion

P
(
ΘUS|Y US

t

)
= L(Y US

t |ΘUS)P (ΘUS)

where L(Y US
t |ΘUS) the model likelihood. For the other countries we use the US poste-

rior distribution as prior for the common parameters. We can then simulate the posterior

distribution

P F
(
ΘF |Y F

t , Y
US
t ,ΘUS

)
= L̃(Y F

t |ΘUS,ΘF )λ
F

L(Y US
t |ΘUS)p(ΘUS)p(ΘF )

where the parameter λF is the weight that is given to the likelihood of the model for other

countries Notice that the case of λF = 0 corresponds to evaluating the parameters that are

common to the US, ΘUS, at the posterior distribution for the US. The remaining parameters,

ΘF , are instead evaluated at their prior. In our estimation we set λF = 0.05 implying a very

low weight on the foreign model likelihood, L̃(Y F
t |ΘUS,ΘF ). As a result, the posterior

distribution of the common parameters with the US is essentially the same as for the US,

while the likelihood informs about the country-specific parameters. Tables in the additional

technical appendix give the parameter estimates for all other countries. They are obtained

using 200000 draws from the simulated posterior distribution.
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D Marginal Likelihood

To compute the marginal likelihood for the US baseline model we use the Geweke harmonic

mean estimator. For each draw Θi we compute

p(y) =

{
1

D

D∑
i=1

f (Θi)

p (y|Θi) p (Θi)

}−1

where the function f (.) is the density of a Normal distribution with mean and variance corre-

sponding to the mean and variance of the posterior draws sample. Moreover the distribution

is truncated so that

f (Θi) = τ−1 (2π)−d/2 |VΘ| exp
[
−0.5

(
Θi − Θ̄

)′
V −1

Θ

(
Θi − Θ̄

)]
×
{

Θi :
(
Θi − Θ̄

)′
V −1

Θ

(
Θi − Θ̄

)
< χ2

τ,d

}
where χ2

τ,d is the (1− τ) quantile of the χ2
d distribution and d is the dimension of the pa-

rameters’ vector. In order to compute the marginal likelihood we set τ = 0.5.

Appendix: Additional Material (Not for Publication)

D.0.1 Derivation of Γ. Substituting for the marginal cost (7) into the aggregate supply

equation (1) gives

πt − γπt−1 = µt + ξpst + Et

∞∑
T=t

(αβ)T−t [αβξpsT+1 + (1− α) β (πT+1 − γπT )]

= µ̃t + κ̃ϕt + Et

∞∑
T=t

(αβ)T−t [αβκ̃ [ϕT+1 − (πT+1 − π̄t) + γ (πT − π̄t)]]

+Et

∞∑
T=t

(αβ)T−t
[
(1− α) β̃ (πT+1 − γπT )

]
where

κ̃ =

(
1 +

ξp
λxφ

)−1
ξp
λxφ

=
ξp

ξp + λxφ
and β̃ =

βλxφ

ξp + λxφ
=

β

1 + λ−1
x φ−1

.
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Rearranging gives(
1 + (1− α) β̃ − αβκ̃

)
πt − γπt−1 = µ̃t + κ̃ϕt +

+Et

∞∑
T=t

(αβ)T−t
[
αβκ̃ϕT+1 − (1− αβγ)

(
αβκ̃− (1− α) β̃

)
πT+1

]

+Et

∞∑
T=t

(αβ)T−t [αβκ̃ (1− γ) π̄t]

The rational expectations equilibrium is computed from

πt − γπt−1 = µ̃t + κ̃Et

∞∑
T=t

β̃T−tϕT

giving

πt − γπt−1 = µ̃t + ωϕϕt

where

ωϕ =
κ̃

1− β̃ρ
.

It can be further simplified as

ωϕ =

ξp
ξp+λxφ

1− βλxφ
ξp+λxφ

ρ

=
1

1 + (1− βρ)λxξ−1
p φ

Substituting the discounted forecast for inflation

Et

∞∑
T=t

(αβ)T−t πT+1 =

(
1

1− αβ
− γ

1− αβγ

)
π̄t +

γ

1− αβγ
πt +

ωϕρ

(1− αβρ) (1− αβγ)
ϕt.
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into the aggregate supply curve gives

πt − γπt−1 = µ̃t +

κ̃+
αβκ̃ρ

1− αβρ
−

(1− αβγ)
(
αβκ̃− (1− α) β̃

)
(1− αβγ) (1− αβρ)

ωϕρ

ϕt +

+

[
αβκ̃

1− γ
1− αβ

+
(

(1− α) β̃ − αβκ̃
)(1− αβγ

1− αβ
− (1− αβγ) γ

1− αβγ

)]
π̄t.

Using rational expectations about transitional dynamics and the fact that

κ̃+
αβκ̃ρ

1− αβρ
−

(1− αβγ)
(
αβκ̃− (1− α) β̃

)
(1− αβγ) (1− αβρ)

ωϕρ = ωϕ

permits

πt − γπt−1 = µ̃t + ωϕϕt +

+

[
αβκ̃

1− γ
1− αβ

+
(

(1− α) β̃ − αβκ̃
)(1− αβγ

1− αβ
− (1− αβγ) γ

1− αβγ

)]
π̄t

Simplifying then provides

πt − γπt−1 = µ̃t + ωϕϕt +

+
1

ξp + λxφ

[
αβξp

1− γ
1− αβ

+ ((1− α) βλxφ− αβξp)
(

1− αβγ
1− αβ

− (1− αβγ) γ

1− αβγ

)]
π̄t

or

πt − γπt−1 = µ̃t + ωϕϕt +

+
1

ξp + λxφ

[
αβξp

(
1− γ

1− αβ
− 1− αβγ

1− αβ

)]
π̄t

+
1

ξp + λxφ

[
(1− α) βλxφ

(
1− αβγ
1− αβ

− (1− αβγ) γ

1− αβγ

)
+ αβξpγ

]
π̄t

or

πt − γπt−1 = µ̃t + ωϕϕt−1 + (1− γ) Γπ̄t + ωϕεt
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where

Γ =
1

1 + λ−1
x φ−1ξp

(1− α) β

1− αβ
.

Using φ = 1 we have

Γ =
1

1 + ξpλ−1
x

(1− α) β

1− αβ

as in the main text.

D.0.2 Derivation and Proofs. The crucial step is the derivation of the prediction for

the linear state (step 6). Notice first that given the link between π̄t and the linear state we

can use [
ξt|Yt,π̄(i)

t|t ,k
(i)
t|t

π̄t+1|t − fπ̄(π̄
(i)
t|t ,k

(i)
t|t )|Yt,π̄

(i)
t|t ,k

(i)
t|t

]
∼

N

([
ξ

(i)
t|t

A
(i)
π̄,tξ

(i)
t|t

]
,

[
P

(i)
t|t A

(i)
π̄,tP

(i)
t|t

P
(i)
t|t A

(i)′
π̄ A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄

])
.

Using properties of the normal distribution, we can now get the conditional distribution

ξ
∗(i)
t|t = ξ

(i)
t|t + P

(i)
t|t A

(i)′
π̄,t

(
A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄,t

)−1 (
π̄

(i)
t+1|t − fπ̄(π̄

(i)
t|t ,k

(i)
t|t )− f

(i)−1
k,t z

(i)
t|t

)
P
∗(i)
t|t = P

(i)
t|t − P

(i)
t|t A

(i)′
π̄,t

(
A

(i)
π̄,tP

(i)
t|t A

(i)′
π̄,t

)−1

A
(i)
π̄,tP

(i)
t|t

where

A
(i)
π̄,t = Aπ̄

(
π̄

(i)
t|t ,k

(i)
t|t

)
;

f
(i)−1
k,t = fk(π̄

(i)
t|t ,k

(i)
t|t )
−1.

The predictions for the linear state are then

ξ
(i)
t+1|t = f

(i)
ξ,t + A

(i)
ξ,tξ
∗(i)
t|t

where

f
(i)
ξ,t = fξ(π̄

(i)
t|t ,k

(i)
t|t );

A
(i)
ξ,t = Aξ(π̄

(i)
t|t ,k

(i)
t|t ),
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and

P
(i)
t+1|t = A

(i)
ξ,tPt|tA

(i)′
ξ,t +

−A(i)
ξ,t

[
Pt|tA

(i)′
π̄,t

(
A

(i)
π̄,tPt|tA

(i)′
π̄,t

)−1

A
(i)
π̄,tPt|t

]
A

(i)′
ξ,t +Qξ.

Here we show that P
(i)
t+1|t = Pt+1|t for every (i). For given initial Pt|t, it is straightforward

to show that (
A

(i)
π̄,tPt|tA

(i)′
π̄,t

)−1

=
1

f
(i)−2
k,t P

[η,η]
t|t

.

Then a little algebra leads to the following:

P̄
(i)
t|t = Pt|tA

(i)′
π̄,t

(
1

f
(i)−2
k,t P

[η,η]
t|t

)
A

(i)
π̄,tPt|t

=


P

[η,η]
t|t P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,ϕ]
t|t

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

P
[η,ϕ]
t|t

P
[η,π]
t|t

P
[η,η]
t|t

P
[η,π]
t|t P

[η,ϕ]
t|t

P
[η,π]
t|t

P
[η,η]
t|t

(
P

[η,π]
t|t

)2

P
[η,η]
t|t


= P̄t|t.

Next, evaluate

P̃t|t = A
(i)
ξ,tPt|tA

(i)′
ξ,t − A

(i)
ξ,tP̄t|tA

(i)′
ξ,t = A

(i)
ξ,t

(
Pt|t − P̄t|t

)
A

(i)′
ξ,t

where

(
Pt|t − P̄t|t

)
=


0 0 0

0 P
[ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t

P
[ϕ,π]
t|t −

(
P

[η,ϕ]
t|t

)2
P

[η,π]
t|t

P
[η,η]
t|t

0 P
[η,π]
t|t −

(
P

[η,ϕ]
t|t

)2
P

[η,π]
t|t

P
[η,η]
t|t

P
[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

 .
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Finally,

P̃t|t = A
(i)
ξ,t

(
Pt|t − P̄t|t

)
A

(i)′
ξ,t =

0 0 0

0 ι1 ι2 + ι1

0 ι2 + ι1 2ι2 + ι1 +

(
P

[π,π]
t|t −

(
P

[η,π]
t|t

)2

P
[η,η]
t|t

)
γ2


where

ι1 = ρ2
ϕ

P [ϕ,ϕ]
t|t −

(
P

[η,ϕ]
t|t

)2

P
[η,η]
t|t


ι2 =

(
−
P

[η,ϕ]
t|t P

[η,π]
t|t

P
[η,η]
t|t

+ P
[ϕ,π]
t|t

)
ρϕγ.

So we can express

P
(i)
t+1|t = Pt+1|t = Qξ + P̃t|t.
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