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Abstract

This paper puts to test ? conjecture that a small incidence of informational stickiness can lead
to a large amount of persistence in aggregate prices in a world of differential information. We do

so by assuming that firms receive private noisy signals about the state in an otherwise standard

model of price setting with sticky-information. We prove there exists a unique equilibrium

of the incomplete information game induced by the firms’ pricing decisions and derive the

resulting Sticky-Dispersed Information (SDI) Phillips curve. The main effect of dispersion is to

substantially magnify the immediate impact of a given shock when the degree of stickiness is

small. Its effect for persistence, however, is minor: even when information is largely dispersed,

a substantial amount of informational stickiness is needed to generate persistence in aggregate

prices and inflation.
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1 Introduction

? sticky information model achieves two important goals at once: (i) explains why prices fail to

respond quickly to nominal shocks and (ii) reconciles the backward-looking behavior needed to

generate the observed persistence in aggregate prices with the assumption that agents are fully

rational. Nevertheless, in a world in which information becomes more frequently available, the

assumption that information is sticky is less plausible. Consequently, one would expect that the

power of a sticky-information model in explaining the observed degree of persistence in prices to

diminish. ?, however, conjecture that only a small incidence of price stickiness is needed to generate

substantial persistence in aggregate prices in a world of differential information. This paper puts

such conjecture to test.1

We do so by studying how individual firms set prices when information is both sticky and

dispersed, and analyze the resulting dynamics for aggregate prices and inflation rates. In our

model, a firm’s optimal price is a convex combination of the current state of the economy and

the aggregate price level. Nevertheless, as firms do not observe the current state nor other firm’s

princing decisions, they have to use the available information to infer the optimal price. As in ?,

only a fraction of firms update their information set at each period. Those who update receive

two sources of information: the first piece is the value of all previous periods states, while the

second piece is a noisy, idiosyncratic, private signal about the current state of the economy. Since

noisy signals are idiosyncratic, the firms that update their information set will have heterogenous

information about the state (as in ? and ?). Hence, in our model, heterogenous information

disseminates slowly in the economy.

Firms must not only form beliefs about the current state but also form beliefs about the other

firms’ beliefs about the current state, and so on, so that higher-order beliefs play a key role in our

model. Hence, the pricing decisions by firms induce an incomplete information game among them.

In our main result, we prove that there exists a unique equilibrium of such game. The unique-

ness of the equilibrium allows us to unequivocally speak about the sticky-dispersed-information

(henceforth, SDI) aggregate price level and Phillips curve. The SDI aggregate price level we derive

depends on all the current and past states of the economy. This is so for two reasons. First, there

are firms in the economy for which the information set has been last updated in the far past. This

is a direct effect of sticky information. Second, firms that have just received new information will

behave, at least partly, as if they were backward-looking. This happens because of an strategic

effect: their optimal relative price depends on how they believe all other firms (including those that

have outdated information sets) in the economy are setting prices.

From aggregate prices, we are able to derive the SDI Phillips curve and show that inflation also

1? last sentence is "The incidence of sticky information or rational inattention that is necessary to account for
the observed degree of persistence may be quite small when embedded in a world of differential information. "
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depends on all the current and past states of the economy. This result is linked to the one obtained

in ?, in which inflation depends on past expectations of current economic conditions, due to the

fact that firms compute expectations based on outdated information. This is an implication of the

stickiness of information in our model and was already present in ?. In our model, however, in

addition to being sticky, information is also noisy and dispersed. The fact that information is noisy

leads a firm that has its information set updated in t to find it optimal to place positive weight on

the states from periods t − j, j > 0, to predict the state in period t. Hence, in comparison to ?,

the adjustment of prices to shocks will be slower in an economy with noisy information. Through

the complementarities in price setting, the fact that, on top of being noisy, information is dispersed

magnifies such effect.

Hence, we establish analytically that dispersion magnifies the effects of stickiness on persistence.

To evaluate the quantitative importance of dispersion in increasing the effect of stickiness, we

perform some numerical simulations. These simulations suggest that, on the one hand, in settings

with small incidence of sticky information, dispersion plays at most a minor role in generating

persistence. However, for such cases, dispersion substantially magnifies the immediate impact of

a given shock. Without a substantial amount of price stickiness, although much larger than what

would have been if there were no dispersion, the effect of a shock tends to quickly vanish.

On the other hand, when there is a large amount of price stickiness, the effects of dispersion on

both the immediate impact of a given shock and its persistence in the economy tend to be very

small. Therefore, in a model of sticky-dispersed information, what is key for the generation of

persistence is a substantial amount of price stickiness.

Related Literature. In addition to the papers already mentioned, our work follows a large

number of papers that sheds new light into the tradition that dates back to ? and ? of considering

the effects of imperfect information on price-setting decisions. ? provide the most recent survey on

the impact of informational frictions on pricing decisions, comparing a partial (dispersed) informa-

tion model with a delayed (sticky) information model, and deriving their common implications.2

In turn, ? introduce dispersed information (and explicitly discuss the role of higher order beliefs)

in an otherwise standard setting with sticky prices à la ?. ? covers a myriad of topics related to

informational asymmetries and information acquisition in macroeconomics and finance. Our paper

connects to this broad literature through two specific strands. In our model, (i) information is

sticky, as in ? and others, and (ii) following ? and ?, among others, information is dispersed.

The paper that is the closest to ours is ?. The authors combine in a single model both dispersed

information and informational stickiness to study the signaling role of policy actions. The aspects

that differenciate our paper to ? pertain to two issues: assumptions and focous. Concerning as-

2The theories of "rational inattention" proposed by ? (?, ?) and "inattentiveness" proposed by ? (?, ?) have
been used to justify models of dispersed information and sticky information.
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sumptions, we explicit incorporate dynamics in the relevant fundamental of our model economy, in

contrast to ? that considers that the fundamental is repetidaly drawn from a normal distribution.

Dynamics changes considerably the way agents form their beliefs in the sense they can make pre-

dictions even when they have a outdated information set. Therefore, we have dispersed information

even among those agents who has outdated information. Dynamics also alows us to obtain impulse

responses to both structural and informational shocks. Concerning focous, our framework enfasizes

the interaction between stickness and dispersion and allows us to investigate how these informa-

tional frictions interchanges. To the best of our knowledge, we are the first to offer a dynamic

model with an integrated approach to study the interaction of dispersion and stickiness on pricing

decisions. By focusing on informational stickiness (rather than price stickiness), we complement

the analysis of ?.

Organization. The paper is organized as follows. In section 2, the set-up of the model is

described. In section 3, we derive the unique equilibrium of the pricing game played by the firms,

and derive the implied aggregate prices and inflation rates. Section 5 compares our SDI Phillips

curve with three benchmarks: the complete information, the sticky-information and the dispersed

information Phillips curves. In section 4, we define a measure of persistence in our setting, and then

analytically derive the effects of the parameters that capture stickiness and dispersion in the model

on our measure of dispersion, and perform some numerical simulations to evaluate the quantitative

importance of each of these factors. Section 6 draws the concluding remarks. All derivations that

are not in the text can be found in the Appendix.

2 The Model

The model is a variation of ? sticky information model.3 There is a continuum of firms, indexed

by i ∈ [0, 1] , that set prices at every period t ∈ {1, 2, ...} .
Although prices can be re-set at no cost at each period, information regarding the state of the

economy is made available to the firms infrequently. At period t, only a fraction λ of firms is

selected to update their information sets about the current state. For simplicity, the probability of

being selected to adjust information sets is the same across firms and independent of history.

We depart from a standard sticky-information model by allowing information to be heterogeneous

and dispersed : a firm that updates its information set receives public information regarding the

past states of the economy as well as a private signal about the current state.

Pricing Decisions Under complete information, any given firm z ∈ [0, 1] set its (log-linear)
price pt (z) equal to the optimal price decision p∗t given by

3Subsequent refinements of the sticky information models can be found in ? (?, ?, ?) and ? (?, ?, ?).
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p∗t ≡ rPt + (1− r) θt, (1)

where Pt ≡
R 1
0 pt (z) dz is the aggregate price level, and θt is the nominal aggregate demand, the

current state of the economy. This pricing rule is standard, and, although we don’t do it explicitly,

can be derived from a firm’s profit maximization problem in a model of monopolistic competition

in the spirit of ?.

Information The state θt follows a random walk

θt = θt−1 + �t, (2)

with �t ∼ N
¡
0, α−1

¢
.

If firm z ∈ [0, 1] is selected to update its information set in period t, it observes all previous

periods realizations of the state, {θt−j , j ≥ 1}. Moreover, it obtains a noisy private signal about
the current state. Denoting such signal by xt (z), we follow the literature and assume:

xt (z) = θt + ξt (z) , (3)

where ξt (z) ∼ N
¡
0, β−1

¢
, β is the precision of xt (z), and the error term ξt (z) is independent of �t

for all z, t.

As a result, if one defines

Θt−j = {θt−k}∞k=j , (4)

at period t, the information set of a firm z that was selected to update its information j periods

ago is

It−j (z) = {xt−j (z) ,Θt−j−1} . (5)

3 Equilibrium

Using (1), the best response for a firm z that was selected to update its information j periods

ago — and, therefore, has It−j (z) as its information set — is its forecast of p∗t , given the available

information It−j (z):

pt (z) = E [p∗t | It−j (z)] . (6)

Denoting by Λt−j the set of firms that last updated its information set at period t − j, we can
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express the aggregate price level Pt as

Pt =
R
∪∞j=0Λt−j

pt (z) dz (7)

=
P∞

j=0

R
Λt−j

E [p∗t | It−j (z)] dz.

Since the optimal price p∗t is a convex combination of the state, θt, and the aggregate price level,

firm z needs to forecast the state of the economy and the pricing behavior of the other firms in the

economy. The pricing behavior of each of these firms, in turn, depends on their own forecast of

the other firms’ aggregate behavior. It follows that firm z must not only forecast the state of the

economy but also, to predict the behavior of the other firms in the economy, must make forecasts

of these firms’ forecasts about the state, forecasts about the forecasts of these firms forecasts about

the state, and so on and so forth. In other words, higher order beliefs will play a key role in the

derivation of an equilibrium in our model.

Indeed, if one defines the average k-th order belief about the current state recursively as follows:

Ēk [θt] =

(
θt, k = 0P∞

j=0

R
Λt−j

E
£
Ēk−1 [θt] | It−j (z)

¤
dz, k ≥ 1

, (8)

we have that, in equilibrium, the aggregate price level is

Pt = (1− r)
P∞

k=1 r
k−1Ēk [θt] . (9)

3.1 Computing the Equilibrium

In this section, we derive the unique equilibrium of the pricing game played by the firms. Following

?, we do this in two steps. We first derive an equilibrium for which the aggregate price level is a

linear function of fundamentals. We then establish, using (9), that this linear equilibrium is the

unique equilibrium of our game.

3.1.1 Posterior Distribution

In the Appendix, we show that, given the distribution of the private signals and the process {θt}
implied by (2), a firm z that updated its information set in period t− j makes use of the variables

xt−j (z) = θt−j + ξt−j (z) and θt−j−1 = θt−j − �t−j , to form the following belief about the current

state θt−j :

θt−j | It−j (z) ∼ N
³
(1− δ)xt−j (z) + δθt−j−1, (α+ β)−1

´
, (10)

where

δ ≡ α

α+ β
∈ (0, 1) . (11)
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Hence, a firm that updated its information set in t − j expects the current state to be a convex

combination of the private signal xt−j (z) and a (semi) public signal θt−j−1 — the only relevant piece

of information that comes from learning all previous states {θt−j−k}k≥1.4 The relative weights

given to xt−j (z) and θt−j−1 when the firm computes the expected value of state θt−j depend on

the precision of such signals.

Using (2), one has that, for m ≤ j,

θt−m = θt−j +
Pj−m−1

k=0 �t−m−k. (12)

Thus, the expectation of a firm z that last updated its information set at t− j about θ is

E [θt−m | It−j (z)] =
(

E [θt−j | It−j (z)] = (1− δ)xt−j (z) + δθt−j−1 : m ≤ j

θt−m : m > j
. (13)

In words, a firm that last updated its information set in period t− j expects that all future values

of the fundamental θ will be the same as the expected value of the fundamental at the period t− j.

Moreover, since at the moment it adjusts its information set the firm observes all previous states,

the firm will know for sure the value of θt−m for m > j.

3.1.2 Beliefs

We establish that there is a unique linear equilibrium in the game by computing the aggregate price

level in period t as an weighed average of all (average) higher order beliefs about the state θt, as

stated in (9).

First Order Beliefs: Using (13), we are able to compute (8) for the case k = 1.

Ē1 [θt] = λ
P∞

j=0 (1− λ)j [(1− δ) θt−j + δθt−j−1] . (14)

Higher Order Beliefs: In the Appendix, we use (14) and the recursion (8) to derive the

following useful result:

Lemma 1 The average k-th order forecast of the state is given by

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1] , (15)

4θt−j−1 is the only piece of information in Θt−j = {θt−j−k}∞k=1 the firm needs to use because the state’s process
is Markovian.
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with the weights (κm,k, δm,k) are recursive defined for k ≥ 1"
κm,k+1

δm,k+1

#
= [1− (1− λ)m]k

"
(1− δ)

δ

#
+Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡

⎡⎣h(1− δ)
h
1− (1− λ)m+1

i
+ δ [1− (1− λ)m]

i
0

δ
hh
1− (1− λ)m+1

i
− [1− (1− λ)m]

i h
1− (1− λ)m+1

i⎤⎦ ,
and the initial weights are (κm,1, δm,1) ≡ (1− δ, δ).

3.1.3 Equilibrium Price Level and SDI Phillips curve

We obtain the the equilibrium aggregate price level by plugging (15) into the expression for Pt, (9)

and the SDI Phillips curve by taking the first difference.

Proposition 1 In an economy in which information is sticky and dispersed, and the state follows

(2), there is a unique equilibrium in the pricing game played by the firms. In such equilibrium, the

aggregate price level is given by

Pt =
P∞

m=0Km [(1−∆m) θt−m +∆mθt−m−1] , (16)

and the SDI Phillips curve is given by

πt =
P∞

m=0Km [(1−∆m) (θt−m − θt−m−1) +∆m (θt−m−1 − θt−m−2)] , (17)

where

Km ≡ (1− r)λ (1− λ)m

(1− r [1− (1− λ)m])
³
1− r

h
1− (1− λ)m+1

i´ , (18)

∆m ≡ δ [1− r [1− (1− λ)m]]

1− r
h
(1− δ)

h
1− (1− λ)m+1

i
+ δ [1− (1− λ)m]

i . (19)

Note that the current aggregate price level Pt depends on current and past states of the economy.

This is so for two reasons. First, there are firms in the economy for which the information set

has been last updated in the far past. This is a direct effect of sticky information, captured by

the term Km. Second, even firms that have just adjusted their information set will be, at least

partly, backward-looking. This happens because of an strategic effect: their optimal relative price

depends on how they believe all other firms (including those that have outdated information sets)
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in the economy are setting prices. This strategic effects is captured by the terms ∆m. While they

depend on δ, they reflect a non trivial interaction between dispersion and stickiness due to strategic

complementarity in pricing decisions. As the weight firms attach to other firms’ behavior vanishes,

r → 0, the effects of dispersion and stickness are completely disentangled in the resulting weights

∆m → δ and Km → λ (1− λ)m.

From aggregate prices, It is immediate to show that inflation also depends on the current and

all past states of the economy. This result is linked to the one obtained in ?, in which inflation

depends on past expectations of current economic conditions, due to the fact that in our model,

as shown in (9), individual expectations about the current state are functions of the past states os

the economy.

In our model, however, on top of being sticky, information is also dispersed. The effect of

dispersion is captured by the positive weight given to the state in period θt−m−1 by a firm that

has its information set updated in t−m. If, instead of having a private signal of θt−m, firms knew

the state, they would ignore the information given by θt−m−1. But, as the private signal the firm

observes is noisy, it is always optimal to place some weight on past states to forecast the current

state. Hence, in comparison to an economy à la ?, the adjustment of prices to shocks will be slower

in an economy with disperse information. This result, in line with ?, shows that the introduction

of differential information in an otherwise standard sticky information model tends to magnify the

effect of stickiness on the persistence of aggregate prices and inflation rates. In the next section,

we aim to quantify the potential contribution of dispesion for persistence.

As a side remark, we point out that the introduction of dispersion in an sticky information

model leads to price and inflation inertia irrespective of assumptions regarding the firms’ capacity

to predict equilibrium outcomes. Indeed, although they may not have their information sets up

to date, the firms in our model correctly predict the equilibrium behavior of their opponents. In

spite of correctly predicting the strategies (i.e., contingent plans) adopted by the opponents in

equilibrium, a firm cannot infer what is the actual price set by them (i.e., the action taken), since it

cannot observe its opponents’ private signals. Hence, a firm that hasn’t updated its information set

cannot infer the current state from the behavior of its opponents .This is in contrast to ? who, in

order to obtain price and information inertia in a model with sticky but non-dispersed information,

(implicitly) assume that agents cannot condition on equilibrium behavior from the opponents. In

fact, in their main experiment, there is a (single) nominal shock that only a fraction of the firms

observe. Trivially, the prices set by those firms (as well as aggregate prices) will reflect such change

in the fundamental. Hence, a firm that hasn’t observed the shock but can predict the equilibrium

behavior of the opponents will be able to infer the fundamental from such behavior.5 It follows

that all firms will adjust prices in response.

5The argument here is similar to the one in Rational Expectations Equilibrium models à la Grosmann (1981).
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4 The Relative of Importance of Stickiness and Dispersion of In-

formation for Persistence

This section evaluates the importance of dispersion in a setting in which information is sticky. We

first define a measure of persistence in our setting. We then (i) analytically derive the effects of the

parameters that capture stickiness and dispersion in the model on our measure of dispersion and

(ii) perform some numerical simulations to evaluate the quantitative importance of each of these

factors.

4.1 The Effects of Dispersion and Stickiness on Persistence:

Note that we can rewrite (17) as

πt =
P∞

m=0 cmπC,t−m (20)

where the coefficients cm, m ≥ 0, are given by

cm ≡

⎧⎪⎨⎪⎩
¡
1−r
r

¢ h
1

1−r(1−ρ) − 1
i

if m = 0¡
1−r
r

¢ ∙
1

1−r[1−ρ(1−λ)m] −
1

1−r[1−ρ(1−λ)m−1]

¸
if m ≥ 1,

(21)

and ρ = 1− λ (1− δ).

Therefore, using equations (2), that describes the evolution of θ, and (17), one can write the SDI

inflation as

πt =
P∞

k=0 ckεt−k,

The direct impact of a period t shock, εt, on the inflation rate in period t + m, πt+m, is cm.

Hence, the cumulative impact of a shock εt on period πt+m is:

Cm =
Pm

k=0 ck

=

µ
1− r

r

¶ ∙
1

1− r + rρ (1− λ)m
− 1
¸
.

Since

C∞ = lim
m→∞

Pm
k=0 ck = 1,

1− Cm can be interpreted as the impact of a shock εt that still remains to be propagated after m

periods. Hence, we take 1 − Cm as the measure of persistence.of a shock in our setting. We now

evaluate how dispersion and stickiness affect persistence.
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Not surprisingly, when information becomes less sticky, persistence falls:

∂ (1− Cm)

∂λ
=

"
1− r

[1− r + rρ (1− λ)m]2

#
∂ρ (1− λ)m

∂λ

= −
µ
1− r

r

¶"
1

[1− r + rρ (1− λ)m]2

# h
(1− λ)m (1− δ) + ρm (1− λ)m−1

i
< 0.

It is natural to take δ, the weight placed by an agent on the previous values of the state vis à vis

his private information, as a meaure of information dispersion.6 The higher δ, the more dispersed

is the information. Notice that,

∂ (1− Cm)

∂δ
= −∂Cm

∂δ
=

(1− r)λ (1− λ)m

[1− r + rρ (1− λ)m]2
> 0.

Hence, as expected, whenever λ ∈ (0, 1) , dispersion increases the persistence of a shock.
We are also interested in understanding how the effect of stickiness on persistence varies with

the degree of dispersion as captured by δ. Notice that

∂2 (1− Cm)

∂λ∂δ
=

µ
1− r

r

¶"
(1− λ)m

[1− r + rρ (1− λ)m]2

#
> 0

so that the effect of sticky information on persistence is higher in a world of differential information.

We summarize this discussion in the following result.

Proposition 2 For a given degree of dispersion (stickiness), the higher the degree of stickiness

(dispersion), the more persistent in the effect of a shock on inflation rates. Moreover, the effect of

stickiness on persistence increases with the amount of dispersion in the economy.

4.2 Numerical Simulations

Proposition 2 shows that dispersion magnifies the effects of stickiness. Through numerical simula-

tions, we now aim to evaluate whether this effect is quantitatively relevant. In particular, we want

to verify wether a small incidence of price stickiness can lead to a large amount of persistence in

aggregate prices in a world of differential information.

A first hint of an answer comes from the fact that both ∂(1−Cm)
∂δ and ∂2(1−Cm)

∂λ∂δ are very close to

zero when λ, the fraction of agent getting new information, is close to one. Our simulations confirm

such impression.

Figure 1 deals with the case in which, starting from λ = 0.95, one raises the amount of dispersion

by moving from δ = 0.01 to δ = 0.09. The effect on persistence is minimal. While the shock fully

6The weight δ depends on the relative precision of an agent’s private information, β.
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vanishes after 3 periods when δ = 0.01, it takes only an extra period to vanish when δ = 0.09. It

seems that, when the degree of price stickiness is low, the main effect of dispersion (in any degree)

is to substantially magnify the immediate impact of a given shock. Indeed, when compared to a

setting in which λ = 0.05, the price increase after a shock when λ = 0.95 is larger by a factor of 40

(see figure 2).

Figure 2 analyzes the effect of dispersion when λ = 0.05. It is worth noticing that the effect of a

substantial increase in the amount of disperion (moving from δ = 0.01 to δ = 0.09) is minor both

in terms of the size of the impact of a shock as well as in terms of its persistence.
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This is true throughout all simulations we have performed: whenever the degree of price stickiness

is large, the quantitative contribution of dispersion tends to be small.

5 Benchmarks for the SDI Phillips Curve

Finally, we show that our model nests the dispersed information model (λ = 1) and the sticky

information model (β−1 → 0) as special cases. In order to understand the properties of the SDI

Phillips curve, in what follows, we compare it to those two benchmarks as well as to the Phillips

curve implied by the complete information case.

5.1 Benchmark 1: Complete-information Inflation

If the state θt is common knowledge, the price of any firm z is

pt (z) = p∗t ≡ rPt + (1− r) θt.

Since firms are identical, they all set the same price. As a result

Pt = rPt + (1− r) θt ⇒ Pt = θt.

Hence, under complete information, the equilibrium entails an inflation rate πC,t — that we call

the complete-information inflation — that is equal to the change of states:

πC,t = θt − θt−1. (22)

5.2 Benchmark 2: Dispersed-information Inflation

If stickiness vanishes (λ = 1), our results converge to the ones obtained by ? and ?. Denoting the

inflation rate for the economy without stickiness by πD,t (the dispersed-information inflation), we

have:

πD,t = (1−∆)πC,t +∆πC,t−1, (23)

so that the inflation rate in period t is a convex combination of complete-information inflations of

period t and t− 1, with the weight on period t− 1 complete-information inflation given by

∆ = c1 ≡
δ

1− r (1− δ)
. (24)

Alternatively, as in ?, we can say that inflation in t is a convex combination of the "state/fundamental",

πC,t, and the "public signal", πC,t−1.
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When compared to the full information case, the inflation rate that prevails with dispersed

information displays more inertia. Moreover, note that

E [πD,t | It (z)] = (1−∆)E [πC,t | It (z)] +∆πC,t−1.

Hence, when information is dispersed, the forecast error

πD,t −E [πD,t | It (z)] = (1−∆) [πC,t −E [πC,t | It (z)]]

is proportional to the forecast error of the complete-information inflation πC,t.

5.3 Benchmark 3: Sticky-information Inflation

The other polar case occurs when information is sticky but not dispersed (δ = 0). In such case, the

Phillips curve we obtain resembles the one in ?. Denoting the sticky-information inflation by πS,t,

we have

πS,t =
P∞

m=0KmπC,t−m. (25)

where inflation is also a function of current and past complete-information inflation, but with the

weights Km in (18) replacing the coefficients cm defined in (21). Note that, for m = 0

c0 ≡
(1− r)λ (1− δ)

1− rλ (1− δ)
<
(1− r)λ

1− rλ
≡ K0

because
∂c0
∂δ
≡ − (1− r)λ

[1− rλ (1− δ)]2
< 0.

Considering that
P∞

m=0Km =
P∞

m=0 cm = 1, we obtain that dispersion redistribute the weights

from current to past complete-information inflations.

5.4 Benchmark contribution to SDI inflation

We can rewrite our SDI Phillips curve as a combination of the inflation rates that prevail under

the three benchmarks cases discussed above. First, note that the SDI inflation π is a function of

complete-information inflations πC of current and previous periods. Indeed, using (20) or (16), we

obtain

πt =
P∞

j=0 cjπC,t−j (26)

=
P∞

m=0Km [(1−∆m)πC,t−m +∆mπC,t−m−1] .
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Using (17) and (25), we can also relate the SDI inflation to the sticky-information inflation πS as

follows:

πt = πS,t −
P∞

m=0Km∆m (πC,t−m − πC,t−m−1) .

Finally, if we combine this last equation with (23), we obtain a decomposition of SDI inflation that

includes all the mentioned benchmarks

πt = πS,t +
P∞

m=0Km

µ
∆m

∆

¶
[πD,t−m − πC,t−m] . (27)

Thus, compared to the case in which information is sticky, inflation under sticky and dispersed

information will be higher if, and only if, dispersed-information inflation, πD,t−m, is on "average"

higher than the complete-information inflation πC,t−m.

6 Conclusion

In this paper, we have considered the impact of sticky and dispersed information on individual price

setting decisions, and the resulting effect on the aggregate price level and the inflation rate. We also

evaluated ? conjecture that, in a world of dispersed information, a small incidence of information

stickiness can lead to large amounts of persistence in aggregate prices. Contrary to their conjecture,

we show that, with a small incidence of price stickiness, while dispersion substantially magnifies

the immediate impact of a shock, its effect on persistence tends to be minor.

The model we put forth nests the dispersed information model and the sticky information model

as special cases, and can be extended in many interesting directions. One could, for instance,

consider the case in which agents receive public information from, say, a central banker about

the state of the economy. In such a setting, it would be natural to evaluate what is the best

disclosure policy for a benevolent central banker. One could also use our model to analyze how

communication interacts with other policy instruments (e.g., interest rates) available to a central

banker. We believe these extensions/applications of the model we have developed are interesting

avenues for future research.

7 Appendix

7.1 Posterior Distribution

At this appendix, we calculate the distribution of the fundamental θt−j given that the firm updated

its information set at period t− j. We can compute f (θt−j | Θt−j−1, xt−j) as

15



f (θt−j | θt−j−1, xt−j) =
f (θt−j , θt−j−1, xt−j)R∞

−∞ f (θt−j , θt−j−1, xt−j) dθt−j

=
f (θt−j−1, xt−j | θt−j) f (θt−j)R∞
−∞ f (θt−j , θt−j−1, xt−j) dθt−j

=
f (θt−j−1 | θt−j) f (xt−j | θt−j) f (θt−j)R∞

−∞ f (θt−j , θt−j−1, xt−j) dθt−j

where the last equality holds due to the independence of ξt (z) and �t−j . As

xt−j (z) = θt−j + ξt−j (z)

θt−j−1 = θt−j − �t−j .

where ξt (z) ∼ N
¡
0, β−1

¢
and �t−j ∼ N

¡
0, α−1

¢
, we have that f (xt−j | θt−j) = N

¡
θt−j , β

−1¢ and
f (θt−j−1 | θt−j) = N

¡
θt−j , α−1

¢
. If the dynamics of θt was

θt−j−1 = ρθt−j − �t−j .

we would have

E [θt−j ] = E [θt] =
E [�t]

1− ρ
= 0

V ar [θt−j ] = V ar [θt] =
V ar [�t]

1− ρ2
=

α−1

1− ρ2
.

Therefore, the distribution of θt−j would be given by f (θt−j) = N
¡
0,Ψ−1

¢
where Ψ =.α

¡
1− ρ2

¢
.

Thus, we would obtain

f (θt−j , θt−j−1, xt−j) = c exp

(
−1
2

"
(xt−j (z)− θt−j)

2

β−1
+

¡
θt−j−1 − ρ−1θt−j

¢2
(ρ2α)−1

+
θ2t−j
Ψ−1

#)

= c exp

½
−1
2

£
(β + α+Ψ) θ2t−j − 2 (βxt−j (z) + αρθt−j−1) θt−j

¤¾
× exp

½
−1
2

£
βx2t−j (z) + αρ2θ2t−j−1

¤¾
= cd

1√
2πσΣ

exp

(
−1
2

(θt−j − μ)2

Σ2

)
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where

c = (2π)−3/2 (βαΨ)1/2 d =
√
2πσ exp

n
−12

h
−μ2Σ−2 + βx2t−j (z) + αρ2θ2t−j−1

io
μ = [∆xt−j (z) + (1−∆) zt−j−1] ∆ = β (β + α+Ψ)−1

zt−j−1 = Λρθt−j−1 Λ = α (β + α)−1

Σ2 = (β + α+Ψ)−1

As ρ → 1, we have Ψ → 0, ∆ → δ, and Σ2 → (β + α)−1. Thus f (θt−j | θt−j−1, xt−j) = N
¡
μ, σ2

¢
where μ = [δxt−j (z) + (1− δ) θt−j−1], and σ2 = (β + α)−1.

7.2 Higher Order Beliefs

In this appendix we derive the general formula of the k-th order average expectation

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1]

with the weights (κm,k, δm,k) are recursive defined for k ≥ 1"
κm,k+1

δm,k+1

#
=

"
(1− δ)

δ

#
[1− (1− λ)m]k +Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡

⎡⎣h(1− δ)
h
1− (1− λ)m+1

i
+ δ [1− (1− λ)m]

i
0

δ
hh
1− (1− λ)m+1

i
− [1− (1− λ)m]

i h
1− (1− λ)m+1

i⎤⎦ ,
and the initial weights are (κ1,k, δ1,k) ≡ (1− δ, δ).

We start by computing Ē1 [θt] as

Ē1 [θt] =
P∞

j=0

R
Λj

E
£
Ē0 [θt] | It−j (z)

¤
dz

=
P∞

j=0

R
Λj

E [θt | It−j (z)] dz

=
P∞

j=0

R
Λj
[(1− δ)xt−j (z) + δθt−j−1] dz

= λ
P∞

j=0 (1− λ)j [(1− δ) θt−j + δθt−j−1] .

We can use this result to obtain Ē2 [θt] as

Ē2 [θt] =
P∞

m=0

R
Λm

E
£
Ē1 [θt] | It−m (z)

¤
dz

= λ
P∞

m=0

R
Λm

P∞
j=0 (1− λ)j E [(1− δ) θt−j + δθt−j−1 | It−m (z)] dz.
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We know that

E [θt−j | It−m (z)] =
(
(1− δ)xt−m (z) + δθt−m−1 : m ≥ j

θt−j : m < j
.

Thereafter

Ē2 [θt] = λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j {(1− δ)E [θt−j | It−m (z)] + δE [θt−j−1 | It−m (z)]} dz

+λ
P∞

m=0

R
Λm
(1− λ)m {(1− δ)E [θt−m | It−m (z)] + δθt−m−1} dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [(1− δ) θt−j + δθt−j−1] dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j [(1− δ)xt−m (z) + δθt−m−1] dz

+λ
P∞

m=0

R
Λm
(1− λ)m [(1− δ) [(1− δ)xt−m (z) + δθt−m−1] + δθt−m−1] dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [(1− δ) θt−j + δθt−j−1] dz

= λ2
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1]
Pm−1

j=0 (1− λ)j

+λ2
P∞

m=0 (1− λ)2m
h
(1− δ)2 θt−m +

h
1− (1− δ)2

i
θt−m−1

i
+λ2

P∞
j=1 (1− λ)j [(1− δ) θt−j + δθt−j−1]

Pj−1
m=0 (1− λ)m

= λ
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1] [1− (1− λ)m]

+λ2
P∞

m=0 (1− λ)2m
h
(1− δ)2 θt−m +

h
1− (1− δ)2

i
θt−m−1

i
+λ

P∞
j=1 (1− λ)j [(1− δ) θt−j + δθt−j−1]

h
1− (1− λ)j

i
= λ

P∞
m=0 (1− λ)m 2 [1− (1− λ)m] [(1− δ) θt−m + δθt−m−1]

+λ2
P∞

m=0 (1− λ)2m
h
(1− δ)2 θt−m +

h
1− (1− δ)2

i
θt−m−1

i
.

We can write this expression as

Ē2 [θt] = λ
P∞

j=0 (1− λ)j [κj,2θt−j + δj,2θt−j−1]

where

κj,2 =
¡
1− δ2

¢ h
1− (1− λ)j

i
+ (1− δ)2

h
1− (1− λ)j+1

i
=

h
1− (1− λ)j+1

i
κ2j,1 +

h
1− (1− λ)j

i ¡
1− δ2j,1

¢
,

δj,2 = δ2
h
1− (1− λ)j

i
+
h
1− (1− δ)2

i h
1− (1− λ)j+1

i
=

h
1− (1− λ)j+1

i ¡
1− κ2j,1

¢
+
h
1− (1− λ)j

i
δ2j,1.

Note that

κj,2 + δj,2 =
P1

n=0

h
1− (1− λ)j

in h
1− (1− λ)j+1

i1−n
.
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We use induction to obtain the general case. Suppose that (15) holds for k − 1. Then

Ēk−1 [θt] = λ
P∞

m=0 (1− λ)m [κm,k−1θt−m + δm,k−1θt−m−1] ,

where Pm−1
j=0 (1− λ)j (κj,k−1 + δj,k−1) =

1

λ
[1− (1− λ)m]k−1 .

As a result

Ēk [θt] =
P∞

m=0

R
Λm

E
h
Ēk−1 [θt] | It−m (z)

i
dz

=
P∞

m=0

R
Λm

E
h
λ
P∞

j=0 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] | It−m (z)
i
dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j {κj,k−1E [θt−j | It−m (z)] + δj,k−1E [θt−j−1 | It−m (z)]} dz

+λ
P∞

m=0

R
Λm
(1− λ)m {κm,k−1E [θt−m | It−m (z)] + δm,k−1θt−m−1} dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] dz

= λ
P∞

m=0

R
Λm

Pm−1
j=0 (1− λ)j (κj,k−1 + δj,k−1) [(1− δ)xt−m (z) + δθt−m−1] dz

+λ
P∞

m=0

R
Λm
(1− λ)m [κm,k−1 [(1− δ)xt−m (z) + δθt−m−1] + δm,k−1θt−m−1] dz

+λ
P∞

m=0

R
Λm

P∞
j=m+1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1] dz

= λ2
P∞

m=0 (1− λ)m [(1− δ) θt−m + δθt−m−1]
Pm−1

j=0 (1− λ)j (κj,k−1 + δj,k−1)

+λ2
P∞

m=0 (1− λ)2m [κm,k−1 (1− δ) θt−m + [κm,k−1δ + δm,k−1] θt−m−1]

+λ2
P∞

j=1 (1− λ)j [κj,k−1θt−j + δj,k−1θt−j−1]
Pj−1

m=0 (1− λ)m

= λ
P∞

m=0 (1− λ)m [1− (1− λ)m]k−1 [(1− δ) θt−m + δθt−m−1]

+λ2
P∞

m=0 (1− λ)2m [κm,k−1 (1− δ) θt−m + [κm,k−1δ + δm,k−1] θt−m−1]

+λ
P∞

m=0 (1− λ)m [1− (1− λ)m] [κm,k−1θt−m + δm,k−1θt−m−1] .

We can rewrite the last three as

Ēk [θt] = λ
P∞

m=0 (1− λ)m [κm,kθt−m + δm,kθt−m−1] ,
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where

κm,k ≡ (1− δ) [1− (1− λ)m]k−1 + [(1− δ)λ (1− λ)m + [1− (1− λ)m]]κm,k−1

= (1− δ) [1− (1− λ)m]k−1

+
h
(1− δ)

h
1− (1− λ)m+1

i
+ δ [1− (1− λ)m]

i
κm,k−1

δm,k ≡ δ [1− (1− λ)m]k−1 + δλ (1− λ)m κm,k−1 + [λ (1− λ)m + [1− (1− λ)m]] δm,k−1

= δ [1− (1− λ)m]k−1

+δ
hh
1− (1− λ)m+1

i
− [1− (1− λ)m]

i
κm,k−1 +

h
1− (1− λ)m+1

i
δm,k−1

since

λ (1− λ)m =
h
1− (1− λ)m+1

i
− [1− (1− λ)m] .

Rewriting these weights in matrix format, we obtain"
κm,k+1

δm,k+1

#
=

"
(1− δ)

δ

#
[1− (1− λ)m]k +Am

"
κm,k

δm,k

#
,

where the matrix Am is given by

Am ≡

⎡⎣h(1− δ)
h
1− (1− λ)m+1

i
+ δ [1− (1− λ)m]

i
0

δ
hh
1− (1− λ)m+1

i
− [1− (1− λ)m]

i h
1− (1− λ)m+1

i⎤⎦ ,
which is exactly our result.
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