Robust Mechanism Design

Vinicius Carrasco (PUC-Rio) Paulo Klinger Monteiro (EPGE)
 Humberto Moreira (EPGE)

Santiago, December 2012

Motivation:

A seller who

- wishes to sell an (indivisible) goods
- faces 1 consumer with (unobserved) willingness to pay, $v \in[0,1]$, drawn from $F($.
has a very simple procedure to maximize expected revenues. Indeed...

Motivation: The Simple Economics of Optimal Pricing:

- For price $p \in[0,1]$, consumer is willing to buy $1-F(p)$ "units"
- Total Revenues collected from are $p[1-F(p)]$
- Compute "marginal revenues " (Bulow and Roberts, 1989)

$$
\frac{\partial p[1-F(p)]}{\partial[1-F(p)]}=p-\frac{(1-F(p))}{f(p)}
$$

- Sell to i if, and only if, marginal revenues are positive

Motivation: The Simple Economics of Optimal Pricing,

 $N=1$:When F is regular (Myerson, 1981), optimal selling policy:

- Sell with probability 1 if $v \geq p^{*}$, where

$$
p^{*}-\frac{\left(1-F\left(p^{*}\right)\right)}{f\left(p^{*}\right)}=0
$$

and not sell to the other consumers

- Posted price p^{*} is an optimal mechanism

Motivation:

... What if $F($.$) - "demand " - is not fully known? How to compute marginal$ revenues?

- Designer could behave as econometrician (as in in Segal (2002))
- Non-parametric estimation of F may be needed
* Lots of data
* Tedious computations (Fernandes, (2012))

Motivation:

Even if able to ontain an estimate or specify F :

- Optimal posted price p^{*} is too dependent on fine details of the problem (point-elasticity)
- Insure agaisnt mispecification (or bias)?

Motivation:

Behaving as an econometrician is of no help

- with few observations of previous sales
- if the good will be just sold once (or infrequently)
- mispecification is an issue

What to do?

Motivation:

Experimentation à la Rotschild's (1974) multiarmed bandit problem?

- Can get stuck with the wrong distribution
- Leads to poor design

Motivation:

Design for "multiple purposes" (Milgrom, 2005)

- doing well in a wide range of circumstances is of first order importance for designers
- Executives
* Concern with shareholders
- Government agencies
* Political economy implications of failures

The paper:

We assume that:

- Designer is uncertain about the distribution of a agent's private informationn (e.g., consumer's willingness to pay)
- In face of this uncertainty, designer has a maxmin objective

Related Literature:

- Robust Decion-Making/Delegation:
- Frankel (2013), Carrasco and Moreira (2013)
- Robust Incentice Contracts:
- Hurwicz and Shapiro (1978), Carroll (2013), Garret (2013)
- Full implementation (rule-out bad equilibria \sim concern with worst case):
- Maskin and Sjöström (2002)

First Model:

- Two agents: Seller, who can sell $K \geq 1$ indivisible goods, and one buyer
- Valuations: Seller has zero cost to produce the goods, buyer's valuation for the vector of goods is $v \in[0,1]^{K}$
- Seller only knows the expected value of v - set to $\mathbf{k}=\left(k_{1}, \ldots, k_{K}\right)>0$
- Maxmin objective
* $\mathbf{k}>0$ justified with a simple IA model (due to Carroll)

The Seller's Problem:

$$
\max _{\{q(v), t(v)\}_{v}} \min _{\left\{F \mid \int v_{j} d F(v)=k_{j}, j=1, \ldots, k\right\}} \int t(v) d F(v)
$$

subject to

$$
\begin{aligned}
v \cdot q(v)-t(v) & \geq 0 \text { for all } v \\
v \cdot q(v)-t(v) & \geq v \cdot q\left(v^{\prime}\right)-t\left(v^{\prime}\right) \text { for all } v, v^{\prime}
\end{aligned}
$$

where

$$
v \cdot q(v)=\sum_{j=1}^{K} v_{j} q_{j}(v)
$$

Simplifying ICs

As usual, $\{q(v), t(v)\}_{v}$ is IC if, and only if,

$$
\nabla U(v)=q(v) \text { for a.e. } v \in[0,1]^{K} \quad \text { (Envelope) }
$$

and
$U(v)$ is convex (i.e., $q(v)$ is non-decreasing)

Hence

$$
t(v)=\underbrace{v \cdot q(v)}_{\text {Total Surplus }}-\underbrace{U(v)}_{\text {Buyer's Indirect Utility }}=v \cdot \nabla U(v)-U(v)
$$

The Seller's Problem:

$$
\max _{\{U(v) \text { convex }\}}^{\left\{F \mid \int v_{j} d F(v)=k_{j}, j=1, \ldots, k\right\}} \min _{l(v)}^{\int} \underbrace{[v F(v)}_{l(v \cdot \nabla U(v)-U(v)]}
$$

A Modified Min Problem:

Consider the problem:

$$
\begin{gathered}
\min _{\mu \in \mathcal{P}(k)} \int l(v) d \mu(v) \\
\mathcal{P}(k)=\left\{\mu: \mu([0,1])=1 \text { and } \int v_{j} d \mu(v) \geq k_{j}, j=1, \ldots, k\right\}
\end{gathered}
$$

The Modified Min Problem: First Fact

A solution ν exists:

- Proof uses standard arguments
- The objective is a bounded linear functional (hence, continuous)
- The choice set is weak-* compact

The Modified Min Problem: Second Fact

There exists $\lambda \geq 0, \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \geq 0$ so that, at the solution $\eta, \int l(v) d \eta(v)$ equals

$$
\min _{\mu} \int l(v) d \mu(v)-\lambda\left(1-\int d \mu(v)\right)-\sum_{j=1}^{k} \theta_{j}\left(\int v_{j} d \mu(v)-k_{j}\right)
$$

Conversely, if μ is in $\mathcal{P}(k)$ and minimizes

$$
\begin{aligned}
& \int l(v) d \mu(v)-\lambda\left(1-\int d \mu(v)\right)-\sum_{j=1}^{k} \theta_{j}\left(\int v_{j} d \mu(v)-k_{j}\right) \\
= & -\lambda+\boldsymbol{\theta} \cdot \mathbf{k}+\int[l(v)+\lambda-\boldsymbol{\theta} \cdot v] d \mu(v)
\end{aligned}
$$

μ is a solution of the (relaxed) min problem

The Modified Min Problem: Solution

- From Fact 2, one has to minimize

$$
\Phi(\mu)=\int[l(v)+\lambda-\boldsymbol{\theta} \cdot v] d \mu(v)
$$

- A solution exists only if $l(v)+\lambda-\boldsymbol{\theta} \cdot v \geq 0$

$$
- \text { if } l(\widehat{v})+\lambda-\boldsymbol{\theta} \cdot \widehat{v}<0
$$

$$
\Phi\left(N \delta_{\widehat{v}}\right) \rightarrow-\infty \text { as } N \rightarrow \infty
$$

where $\delta_{\widehat{v}}$ is the Dirac Measure concentrated at \widehat{v}.

The Modified Min Problem: Solution
Letting $I=\{v \mid l(v)+\lambda-\boldsymbol{\theta} \cdot v=0\}$ and $J=\{v \mid l(v)+\lambda-\boldsymbol{\theta} \cdot v>0\}$, if
1.

$$
\int v_{j} d \mu(v) \geq k_{j}
$$

2.

$$
\mu(I)=1, \mu(J)=0
$$

μ solves the relaxed Min Problem

Implications for Allocation: Part I: Exclusion Region

$E=\{v \mid \lambda-\boldsymbol{\theta} \cdot v>0\}$. Then, $l(v)>0 \Leftrightarrow v \in E^{c}$.
Sketch:

- If v is in E^{c} and $l(v)=0, l(v)+\lambda-\boldsymbol{\theta} \cdot v<0$ (which cannot hold)
- If $v \in E$,

$$
l(v)+\lambda-\boldsymbol{\theta} \cdot v>0
$$

- $E \subseteq J \Rightarrow l(v)>0$ is suboptimal (no direct effect and negative indirect effect)
$\boldsymbol{\theta} \cdot \boldsymbol{v} \geq \lambda \Rightarrow$ "minimum revenue" requirement for sales

Implications for Revenues:

- $I=\{v \mid \boldsymbol{\theta} \cdot v \geq \lambda\}$. Over $I, l(v)=-\lambda+\boldsymbol{\theta} \cdot v$

Lemma: Collected Revenues are linear in valuations in any Robust Mechanism:

$$
l(v)=\left\{\begin{array}{c}
0 \text { if } v \in I^{c} \\
-\lambda+\boldsymbol{\theta} \cdot v \text { o.w. }
\end{array}\right.
$$

- Robust design imposes restrictions on payoff levels!
- Rational story for decisions based on payoff levels rather than marginal analysis

Implications for Allocation:

$$
\begin{aligned}
\underbrace{v \cdot \nabla U(v)-U(v)}_{l(v)}=-\lambda+\boldsymbol{\theta} \cdot v, v & \in I \Rightarrow \\
v \cdot \nabla^{2} U(v) & =\boldsymbol{\theta}, v \in I \Rightarrow \\
v \cdot \nabla q(v) & =\boldsymbol{\theta}, v \in I
\end{aligned}
$$

- System of Partial Differential Equations with boundary condition $q(v)=0$ in ∂I

General Solution of the System of PDEs:

- The system of PDEs + boundary condition \Rightarrow

$$
q_{j}(v)=\theta_{j} \ln \left(\frac{\boldsymbol{\theta} \cdot \boldsymbol{v}}{\boldsymbol{\theta} \cdot \widetilde{v}}\right), j=1, \ldots, K
$$

- where $\boldsymbol{\theta} \cdot \widetilde{v}=\lambda($ "pasting condition" assuring $q(v)=0$ in $\partial I)$

The Robust Mechanism, or: finding θ and \tilde{v}

- The seller's problem becomes:

$$
\max _{\boldsymbol{\theta}, \widetilde{v}} \int[-\lambda+\boldsymbol{\theta} \cdot v] d \mu=\boldsymbol{\theta} \cdot[\mathbf{k}-\widetilde{v}]
$$

subject to

$$
q_{j}(1)=\theta_{j} \ln \left(\frac{\boldsymbol{\theta} \cdot \mathbf{1}}{\boldsymbol{\theta} \cdot \widetilde{v}}\right) \leq 1, j=1, \ldots, K
$$

The Robust Mechanism when $k=1$

- For a given $\widetilde{v} \leq k$ (never the case that $\widetilde{v}>k$), pick the largest θ compatible with constraint:

$$
\theta=\frac{1}{\ln \left(\frac{1}{\widetilde{v}}\right)}
$$

- Seller's problem becomes

$$
\max _{\widetilde{v}} \frac{1}{\ln \left(\frac{1}{\widetilde{v}}\right)}[k-\widetilde{v}]
$$

- denote solution by $\widetilde{v}^{*} \in(0,1)$

Result:

Theorem 1: Let be \widetilde{v}^{*} be the solution of FOC. The optimal robust selling mechanism has

$$
q(v)=\left\{\begin{array}{c}
0 \text { if } v<\widetilde{v}^{*} \\
\frac{\ln \left(\frac{v}{\widetilde{\widetilde{v}}^{*}}\right)}{\ln \left(\frac{1}{\widetilde{v}^{*}}\right)}=-\frac{\left(\ln (v)-\ln \left(\widetilde{v}^{*}\right)\right)}{\ln \left(\widetilde{v}^{*}\right)}
\end{array}\right.
$$

Properties:

- Sales with probability smaller than one for all $v<1$
- Distortions also in the "intensive" margin despite lack of curvature in the agents (ex-post) payoff
- Price discrimination:
- Insures against uncertainty without reducing (much) what can be charged from high value consumers
* standard type of argument
- No distortion at the top: $q(1)=1$

Implementation:

Many ways to implement: tariifs (i.e., using Taxation Principle) or posting prices $p \in[z, 1]$ drawn from distribution

$$
G(p)=q(p) \text { for all } p \in\left[\widetilde{v}^{*}, 1\right]
$$

Theorem 2: A non-degenerate distribution of posted prices is an optimal robust selling mechanism. Tariff

$$
T(q)=v q(v)-\int_{0}^{v} q(\tau) d \tau
$$

also implements robust mechanism

Take Home Message:

- Uncertainty leds to price discrimination even with linear payoffs
- Insure against uncertainty by selling to low valuation consumers (as "nature" will certainly pick those guys)
- distort their allocation to be able to keep on selling for high valuation consumers at higher prices
- Discrimination limits "Nature's" ability to hurt the seller
- "Pricewise", insurance takes the form of a distribution of prices

The Robust Mechanism when $k>1$

Much as before:

- Seller's problem:

$$
\max _{\boldsymbol{\theta}, \widetilde{v}} \int[-\lambda+\boldsymbol{\theta} \cdot v] d \mu=\boldsymbol{\theta} \cdot[\mathbf{k}-\widetilde{v}]
$$

subject to

$$
q_{j}(1)=\theta_{j} \ln \left(\frac{\boldsymbol{\theta} \cdot \mathbf{1}}{\boldsymbol{\theta} \cdot \widetilde{v}}\right) \leq 1, j=1, \ldots, K
$$

- Solution $\theta_{i}=\theta_{j}=\theta>0$ for all $\mathrm{i}, j, \widetilde{v}_{j} \in(0,1)$

Properties:

- Full bundling (despite separable environment)
- sales of each good depend on $\sum v_{j}$, a measure of aggregate willingnes to pay
- kinder-egg effect: all goods sold in a one-to-one same proportion regardless of single valuations

Take Home Message:

- Uncertainty leads to bundling even if ex-post payoffs (broadly defined) are separable
- Insure against uncertainty by looking at "aggregate willingness to pay" and selling basket of goods!
- Bundling limits "Nature's" ability to hurt the seller

Some Conclusions:

What have we done?

- Re-wrote (in an anti-Pierre Menard way) a standard model imposing robustness
- Fully derived a non-strandard (multidimensional private info) model also imposing robustness
- hard in an "expected utility" environment, surprisingly simple with maxmin

Some Conclusions:

Why should one care?

- Leads to realistic contractual features without any reliance on (unobservable) payoff or environmentalcharacteristics

Conceptually:

- leads to fully rational decision-making based on payoff levels (rather than margins)
- No behavioral BS

Some Methodological Conclusions:

- Worst-case design as a tractable alternative to fully Bayesian objectives in Mechanism Design
- Developed three ways of solving robust design problems
- as presented here (set-up Lagrangean + find exclusion region+solve ODEs + solve simple maximization problem)
- as a Nash Equilibrium of a zero-sum game (extends Carrasco and Moreira (2013))

