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Abstract

This paper considers the problem faced by n agents who repeatedly have to take a joint action, cannot

resort to side payments, and each period are privately informed about their favorite actions. We study

the properties of the optimal contract in this environment. We establish that first best values can be

arbitrarily approximated (but not achieved) when the players are extremely patient. Also, we show that

the provision of intertemporal incentives necessarily leads to a dictatorial mechanism: in the long run

the optimal scheme converges to the adoption of one player’s favorite action.

1 Introduction

There are many situations in which, repeatedly, a group of agents have to take a common action, cannot

resort to side payments, and each period are privately informed about their favorite actions. Examples

include many supranational organizations such as a Monetary Union or a Common Market. In the former,

monetary policy must be jointly taken and, in the latter, a common tariff with the outside world must be

adopted each period. At the national level, political coalitions which must jointly decide on policy issues are

also a good example. In this paper we study the properties of the optimal contract for environments with

such features.

We first show that efficiency can be arbitrarily approximated, but never attained, when players’ are

sufficiently patient. The intuition goes as follows. In a repeated setting, the promise of continuation (equi-

librium) values can play a similar role to the one side payments play in static mechanism design problems.

The difference between side payments and continuation values is that the latter can only imperfectly transfer

utility across players. In particular, to transfer continuation utility from a player i to another player j in

any period t, allocations (decisions) for periods τ > t must be altered. When players’ are sufficiently patient

(i.e., their discount rate (δ) is close to one), their current payoff, which is weighted by (1 − δ), becomes

insignificant relative to the promised continuation values. Hence, in order to guarantee truth-telling in the
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current period, continuation values have to vary only minimally. Since, the (Incentive Compatible) Utility

Possibilities Frontier is locally linear, this implies that the associated efficiency losses from the variation in

continuation values are arbitrarily small in the limit. The attainment of full efficiency, however, would call

for no variation whatsoever in continuation values. This is clearly at odds with the provision of incentives

needed for an efficient action to be taken. Hence, full efficiency is not attainable.

Although the limiting efficiency result is of interest, our main focus is on understanding the dynamic

properties of the optimal allocation rule for the case in which (although potentially large) the discount factor

is strictly smaller than 1 (δ << 1). In order to understand these properties it is useful to keep in mind, as

a benchmark, what the first best allocation would entail. The first best would call for a constant weighted

average of the players’ types. The problem with this allocation when types are private is that the agents

away from the center have an incentive to exaggerate their positions. If they expect the other types to be to

the left (right) of them they would have an incentive to claim to be far right (far left) and in that way bring

the chosen allocation closer to their preferred point. Compared to the case in which players do not care

about the future (δ = 0), the optimal allocation is more sensitive to extreme announcements of preferences.

This is the case because, when the agents care about the future, they can trade decision power in the current

allocation for decision power in the future. More extreme types are given more weight in the current decision

but they pay for it by having less influence in future allocations.

As known from static mechanism design, once Incentive Compatibility constraints are taken into account,

the agents’ utilities have to be adjusted to incorporate the rents derived from their private information.

Following Myerson (1981), the adjusted utility is referred to as virtual utility. In our repeated setting,

virtual utilities also play a key role. In fact, we show that the dynamics of decision taking is fully determined

by: (i) a decision rule that, at each period, maximizes the weighted sum of the agents’ (instantaneous) virtual

utilities and (ii) a process that governs the evolution of the weights given to the agents’ virtual utilities on

decisions. The dynamics of the decision taking leads to our second and most interesting result. Continuation

values vary from period to period reflecting the agents’ weights in the allocation rule.1 Indeed, continuation

values tend to increase (higher future decision power) for the agent that reports a less extreme preferred

action, and to decrease (lower future decision power) for a player that reports to prefer an extreme action.

Such dynamics eventually lead to one player becoming a dictator. Put differently, in the limit, only the

preferences of one agent are taken into account to determine current and future allocations.

Our approximate efficiency result can be contrasted with the one obtained by Sonnenschein and Jackson

(2007). They study a "budgeting mechanism" which allows the agents to report each possible type (they

have a discrete type space) a fixed number of times.2 The number of times they can report a given type is

given by the frequency with which that type should be realized. They prove (Corollary 2 in their paper)

that, for any � > 0, their "budgeting mechanism" is, for a finite (but large) number of periods of interaction,

less than � inefficient relative to the first best if players are patient. The sources of the inefficiency in their

mechanism and in our scheme are quite different though. In their setting, when the last periods get close,

agents may not be able to report truthfully, as they might have run out of their budgeted reports for a

particular type. Instead, in our setting, the inefficiency arises from the fact that the weights each agent has

1Our approach to the analysis of the optimal allocation rule in the repeated game relies on the factorization results of Abreu,

Pearce and Stacchetti (1990), which show that the agent’s payoff can be split into a current value and a continuation value.
2Although not necessarily efficient for given δ, their mechanism has the nice feature that it is robust i.e. the planner does

not need to know the exact functional form of the agents preferences.
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on the choice of the allocation must vary over time. More remarkably, we slowly drift towards one of the

agents becoming a dictator. Indeed, we show that the optimal way to link decisions over time necessarily

leads to a dictatorship ex-post.

In a somewhat simpler environment in which there is a binary choice each period and agents can have

either have weak or strong preferences for either option, Casella (2005) studies a mechanism in which agents

are given a vote every period which they can use over time.3 The possibility of shifting votes intertemporally

allows agents to concentrate their votes when preferences are more intense. Therefore, if one agent has a

long string of strong preferences and the other doesn’t, the other agent will accumulate a lot of votes and will

be able to outvote him in the future. In a voting setting with two players, two binary issues, a continuum

of preference intensities, and where votes across issues are cast simultaneously, Hortala-Vallve (2007) shows

that if players are allowed to freely distribute a given number of votes across the two issues, the ex-ante

efficient decision can be attained. In our setting the continuation values play the same role as the number

of remaining votes in Casella’s mechanism. However, by considering the optimal mechanism instead of a

particular scheme, we don’t restrict the accrual of votes to one per period and we allow agents to borrow

votes from the future. In our case one of the agents will eventually "run out of votes" and the other will

dictate the allocation in the future. In contrast to Hortala-Vallve (2007), decisions are made sequentially in

our model. Future decisions are used as an instrument to provide incentives for current decisions. This, in

turn, leads to some inefficiency ex-ante and to a dictatorship ex-post.

Our paper also relates to a series of papers that show that continuation values are close substitutes to side

payments in repeated settings. Among those, the closest to ours is Athey and Bagwell (2001), who analyze

an infinitely repeated Bertrand duopoly, and establish that, for a finite discount factor, monopoly profits can

be exactly attained if firms make use of asymmetric continuation values. The difference from our setting is

that, for some states that occur with positive probability, firms in their paper can transfer profits perfectly.

This allows them to reconcile the variation in promised continuation values — which, in our setting, leads to

a dictatorial mechanism — with those values being provided at the region of the Frontier that is linear.

In dynamic insurance problems with one-sided private information such as Thomas and Worral (1990),

the privately informed agent’s marginal utility is driven to −∞, so that his consumption goes to zero. This is
known as the immiseration result.4 This is related to our dictatorship result. Indeed, an agent who reports

to have an extreme type in a given period is like an agent that reports to have a low income realization. The

optimal mechanism will respond by giving that agent more weight in the current allocation decision (similarly

a higher transfer today). Incentive compatibility then calls for the agent to "pay" for this by forgoing future

weight in the allocation decision (future consumption). In their setting, a Principal designing an optimal

insurance policy trades-off risk-sharing (which calls for a constant consumption stream) and the provision of

incentives — through varying continuation values. No matter if there is one agent or a continuum, this leads

to inmisseration in the limit.

In our model, in contrast, privacy of information would not pose a problem if there were just one agent,

nor it is a problem in the case in which there is a continuum of agents. In the one agent case, there is no

incentive problems for the agent because his report will not be weighted with any other reports. In the

continuum of agents case, any report has no effect on the allocation and hence, there is no incentive to lie

3Skrzypacz and Hopenhayn (2004) use a similar chip mechanism to sustain collusion in a repeated auctions environment.
4Atkeson and Lucas (1990) establish a similar result for an economy with a continuum of agents. They show that the income

distribution fans out and in the limit almost all agents are impoverished.
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either. In our environment, incentives are harder to provide when there is a small number of agents.

Despite the similarities with the dynamic insurance literature, we find it remarkable that an optimal

incentive scheme among ex-ante identical agents leads to the granting of all bargain power to a single player.

Also, note that as opposed to immiseration, dictatorship is an absorbing state: once an agent is granted all

the decision rights incentive constraints will not bind any longer and the continuation values will be constant

rather than constantly drifting towards −∞.
The paper is organized as follows. We introduce the model in section 2. The optimal mechanism and its

properties are characterized in Section 3. All proofs are relegated to the Appendix.

2 The Model

There are n < ∞ ex-ante symmetric players, i = 1, 2, ..., n who, at every period, must take a new joint

action, a. At each period t ∈ {0, 1, ...} , they receive privately preference shocks θi ∈ [0, 1] . The preference
shocks are i.i.d. over time and across players, and are drawn from a distribution F (.) , with density f (θi) > 0,

which is symmetric around 1
2 .

Their instantaneous utility is a twice continuously differentiable function5

u (a, θi) ,

with

u (θi, θi) ≥ u (a, θi) for all a,

and

ua,θi (a, θi) > 0 > uaa (a, θi) .

Put in words, their preferences are single peaked, with θi representing their favorite action.

We additionally assume that they are symmetric around 1
2 : for all a, θi ∈ [0, 1] ,

u (a, θi) = u (1− a, 1− θi) .
6

Symmetry of preferences and the distribution of types around 1
2 makes the problem itself symmetric

around that point. Therefore, it is natural to measure extreme preferences in terms of how distant they are

from 1
2 .

After the players observe their preference shocks, they make reports θ̂i, i = 1, ..., n. Letting the initial

history h0 be the empty set, a public history at time t > 0, ht, is a sequence of (i) past announcements of

all players, and (ii) past realized actions:

5All the results extend to the case in which the individual players utility function have different forms. That is:

ui (a, θi) .

This, in turn, implies that our dictatorship result extends to the case in which the welfare criterion is not utilitarian. In

fact, for the general case in which player i0s Pareto weight on the welfare functional is λi, we can proceed as in the Utilitarian

criterion case in the text with

ui (a, θi) = λiui (a, θi) .

6Note that, in particular, this holds whenever an agent with type θi is indifferent between any two actions a and b that are

equidistant from θi.
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This contract is chosen a priori before the agents learn their preference shocks.

Let Ht be the set of all public histories ht. A public strategy for player i is a sequence of functions

{θ̂ti(., .)}t, where
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defines a probability distribution over

public histories. Letting δ ∈ [0, 1) denote the discount factor, player i’s discounted expected payoff is given
by:

E

"
(1− δ)

∞X
t=0

δtu
³
at(θ̂

t
, ht); θti

´#
.

We analyze this game using the recursive methods developed by Abreu, Pearce and Stacchetti (1990).

More specifically, letting W ⊂ <n be the set of Public Pure Strategy Equilibria (PPSE) payoffs for the
players, we can decompose the payoffs into a current utility u (a, θi) and a continuation value vi(θ̂) ∈W :

Eθ[(1− δ)u(a
³
θ̂
´
, θi) + δvi(θ̂i, θ̂−i)],

In other words, any PPSE can be summarized by the actions to be taken in the current period and equilibrium

continuation values as a function of the announcements.

3 Properties of the Optimal Allocation Rules

We can use this decomposition to write the Bellman equation that characterizes the frontier of equilibrium

values that can be attained in this environment. Let v = (v1, v2, ...vn−1) denote the expected values for

players 1, .., n− 1, denote V (v) as the highest value to player n given that other players expected values are
v. Let v be lowest value the designer can assign to an agent, and define v as the players’ payoff when their

preferred action is always taken, v = Eθ [u (θi, θi)] .
7

Letting θ = (θ1, θ2, ..., θn) , we can write V (v) as:

V (v) = max
a:[0,1]n→[0,1],{wi:[0,1]n→[v,v]}i=1,...,n−1

Eθ [(1− δ)u (a (θ) , θn) + δV (w (θ))]

s.t.

Eθ [(1− δ)u (a (θ) , θi) + δwi (θ)] = vi, i = 1, ..., n− 1 (Promise Keeping i)

Eθ−i [(1− δ)u (a (θ) , θi) + δwi (θ)] ≥ Eθ−i

h
(1− δ)u

³
a
³
θ−i,bθi´ , θi´+ δwi

³
θ−i,bθi´i for all θi, θ̂i, i = 1, ..., n−1

(ICi)

7We assume v ≤ Eθ [u (θj , θi)] for i 6= j, that is the value when somebody else chooses the allocation to equal their type.
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Eθ−n [(1− δ)u (a (θ) , θn) + δV (w (θ))] ≥ Eθ−n

h
(1− δ)u

³
a
³bθn, θ−n´ , θn´+ δV

³
w
³bθn, θ−n´´i for all θn, θ̂n

(ICn)

wi (θ) ∈ [v, v] , i = 1, ...n− 1, for all θ. (Feasibility)

In this setting, the first best allocation would be a weighted average of the agents’ types, with the weights

being constant over time. The difficulty of implementing such an allocation is that, whenever his preference

shock is different than 1
2 , the agent would have an incentive to exaggerate his report towards the extremes.

In particular, for the case in which δ = 0, the only way that the principal has to prevent the agents from

lying is by making the allocation more insensitive to the their reports. As a result, the allocation is biased

towards the center.8

When δ > 0, continuation values can be used as an additional instrument to get agents to report truthfully.

Now, an agent that reports an extreme type can be allowed to have a larger impact on the allocation in an

incentive compatible way. The key is to present the agents with a trade-off between the benefit of a larger

influence in the current allocation vs. the loss they will incur in future continuation values. This allows the

mechanism to take into account the intensity of the agents’ preferences, which, in turn, leads to efficiency

gains when compared to a static decision taking problem.

Continuation values play a similar role to side payments in standard static incentive problems. The

difference between side payments and continuation values is that the latter can only imperfectly transfer

utility across players. In particular, to transfer continuation utility from player i to player j in any period

t, allocations for periods τ > t must be altered. This, together with the lack of observability, implies that

one cannot attain exact efficiency as an equilibrium outcome. Indeed, exact efficiency would call for an

equilibrium in which for all histories future allocations would not respond to current announcements. Hence,

truthtelling would have to be a static best response for the players, and this cannot be attained with an

efficient allocation.

Although efficiency cannot be attained, one can arbitrarily approximate it as the players become patient.

In fact, when δ → 1, the utility value of the current period, which is weighted by (1− δ) , becomes insignif-

icant relative to the continuation values. Hence, in order to guarantee truth-telling in the current period

continuation values have to vary only minimally. Since V (v) is locally linear, the associated losses from the

variation in continuation values become negligible.

Indeed, letting

a∗ (θ) = argmax
a

nX
i=1

u (a, θi) ,

be the (ex-ante) symmetric Pareto efficient allocation, and vFB = Eθ

"
nX
i=1

u (a∗ (θ) , θi)

#
, we have

8See Carrasco and Fuchs (2008) for a complete analysis of the static problem with two agents.
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Proposition 1 (Approximate Efficiency) Given � > 0, there exists δ < 1 such that, for all δ > δ the

sum of players PPE payoffs at an optimum are within � of vFB.

This result can be contrasted with the one obtained by Jackson and Sonnenschein (2007). They study

a "budgeting mechanism" which allows the agents to report each possible type (they have a discrete type

space) a fixed number of times. The number of times they can report a given type is given by the frequency

with which that type should statistically be realized. They prove (Corollary 2 in their paper) that, for any

� > 0, their "budgeting mechanism" is less than � inefficient relative to the first best if players are patient and

face sufficiently many similar problems. Although it appears to operate very differently from the storable

votes mechanism proposed by Casella (2005) or our own mechanism, in essence, the budgeting mechanism

also presents the players with a trade-off between current allocation and continuation values. The way

continuation values vary in Jackson and Sonnenschein (2007) with the current reports is not efficient, but,

for δ close to 1, they are sufficient to sustain incentive compatibility and the inefficiency becomes negligible.

The sources of the efficiency losses in their mechanism and in our scheme are quite different though. In their

setting, when the last periods get close, agents may not be able to report truthfully, as they might have run

out of their budgeted reports for a particular type. Instead, in our setting, the inefficiency arises from the

fact that the weight each agent has on the choice of the allocation must vary over time.

3.1 The Dynamics of Decision Taking

By assigning multipliers {λi (θi)}θi to the first order condition counterparts of ICi, and γi to the Promise

Keeping Constraints, we show in the appendix that the first order condition for the optimal current allocation

is h
∂u(a(θ),θn)

∂a f (θn)− dλn(θn)
dθn

∂u(a(θ),θn)
∂a − λn (θn)

∂2u(a(θ),θn)
∂θn∂a

iY
i6=n

f (θi)

+
n−1X
i=1

⎡⎣hγi ∂u(a(θ),θi)∂a f (θi)− dλi(θi)
dθi

∂u(a(θ),θi)
∂a − λi (θi)

∂2u(a(θ),θi)
∂θi∂a

iY
j 6=i

f (θj)

⎤⎦ = 0. (FOC1)

As suggested by Myerson (1984), it is convenient to think about the Lagrangian that yields this first order

condition as representing the weighted sum of the agents’ virtual utilities.9 Indeed, defining new multipliers

eλi (θi) =
λi (θi)

γi
, i = 1, ..., n− 1

eλn (θn) = λn.

and, letting agent i’s instantaneous virtual utility be

eu (a (θ) , θi) = u (a (θ) , θi)−
deλi (θi)
f (θi) dθi

u (a (θ) , θi)−
eλi (θi)
f (θi)

∂u (a (θ) , θi)

∂θi
,

it can be seen from the first order condition for a (.) , that the optimal mechanism maximizes the weighted

sum of the agents’ virtual instantaneous utilities, with the weight given to agent n being equal to one, and

9See also Myerson’s notes on virtual utility at http://home.uchicago.edu/~rmyerson/research/virtual.pdf
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the weight given to agent i 6= 1 being equal to γi.10

In solving for the optimal continuation value for player i, we obtain the following condition:

dV (v)

dvi
= EQ

i

∙
dV (w (θ))

dwi

¸
. (Martingale)

By the Envelope Theorem,

−dV (v)
dvi

= γi.

so that the weight (γi) agent i’s virtual utility is given when the action is taken is a martingale process with

respect to a distribution Qi.

It follows that the dynamics of decision taking is fully determined by (i) a decision rule that, at each

period, maximizes the weighted sum of the agents’ instantaneous virtual utilities, and (ii) the process that

governs the evolution of the weights the agents’ virtual utilities are given on decisions.

The distribution Qi differs from the true distribution of the players’ types by an explicit account — through

the multipliers and their derivatives — of the incentive compatibility constraints. Except for the change of

measure, similar martingale properties for marginal values also hold in many dynamic insurance models.11

Our model differs from them in that, in the dynamic insurance models, the problem is that agents have

an incentive to claim to be poorer than they actually are. Instead, we face a situation were agents have an

incentive to claim their type is more extreme than it actually is. In fact, the symmetry of the problem around

type 1
2 , along with the tilting of the optimal allocation toward the middle to curb the players’ incentives to

exaggerate their preferences, implies that relevant direction in which the Incentive Compatibility constraints

bind depends on whether the players’s favorite action is above or below 1
2 . The relevant constraints for

players whose favorite action is above 1
2 are those that ensure they don’t want to lie upwards. Conversely,

for the case in which the players favorite action is below 1
2 , the relevant constraints are the local downward

constraints. Therefore, the multipliers on the First Order Condition counterparts of ICi and ICn change

sign at 1
2 . The change of measure needed for the property to hold in our setting follows from this point.

Moreover, the dynamic insurance models either deal with the case in which there is a single agent or there

is a continuum of them. In our setting, privacy of information would not pose a problem if there were just

one agent, nor it is a problem in the case in which there is a continuum of agents. In the one agent case,

there is no incentive problems for the agent because his report will not be weighted with any other reports.

In the continuum of agents case, any report has no effect on the allocation and hence, there is no incentive

to lie either. In our environment, incentives are harder to provide since there is a finite number of agents.

It can be shown (this is done in the appendix) that, under the optimal mechanism, for any given {wi}n−1i=1

with wi in (v, v) for all i — i.e., whenever 0 < γi < ∞ — continuation values vary from period to period for

at least one of the agents. Unlike the insurance models, variation in the continuation values is not necessary

in order to provide insurance. For example, in Thomas and Worral (1990), when δ = 0, there is no way

the Principal can provide any insurance to the agent that gets a low income realization. In our model,

10 In comparison to an agent’s real utility, the virtual utility incorporates two terms related to the effects an action schedule

has on incentives. First, the term − dλi(θi)
f(θi)dθi

u (a (θ) , θi) captures how tempting it is, for a given agent i, to deviate locally when

his preference shock is θi. Second, the term −λi(θi)
f(θi)

∂u(a(θ),θi)
∂θi

captures how tempting it is for types other than θi to report

that their preference shock is θi.
11For examples those studied by Green (1987), Thomas and Worral (1990), and Atkenson and Lucas (1993).
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instead, since agents don’t know how aligned their interests are it is possible even in the static case to have

an allocation which depends on the Agents’ types.12 Nonetheless, in an optimal scheme it will always be

efficient to have continuation values varying over time. The intuition for this is similar to the insurance

models. Continuation values allow for agents with an extreme type in the current period (poor agents in

the insurance models) to get more weight in the current allocation choice (higher current consumption) in

exchange for forgoing decision rights (consumption) in the future.

The proof of Theorem 1 (see below) follows similar arguments to those in Thomas and Worral (1990).

We first note that the Martingale Convergence Theorem implies that, for all i, dV (v)
dvi

must converge to a

random variable. Then, we show by contradiction that this random variable cannot have positive density for

any value in (−∞, 0).13 Therefore, eventually, the action taken will place weight only to one of the players.

Alternatively, eventually, either

wi (θ)→ v for some i, or V (w (θ))→ v

with probability 1.

Theorem 1 (Dictatorship in the limit) The provision of intertemporal incentives necessarily leads to a
dictatorial mechanism: In the limit as t → ∞, either vi converges to v almost surely for some i, or V (v)

converge to v almost surely.

Whenever an agent is promised continuation values of v, it must be the case that his favorite action is

taken from then on. In other words, v is an absorbing state. Therefore, eventually, a single player will be

given all bargain power over decisions to be taken. Dictatorship is an ex-post consequence of an optimal

mechanism in repeated decision taking settings. It is worth pointing out that although Sonnenschein and

Jackson’s (2007) budgeting mechanism does not have this long run implication, it can lead to even lower

values in long run. This happens when the set of reports left to an agent is very different from the distribution

of types.

In environments with endogenous participation constraints, such as Fuchs and Lippi (2006), the threat of

abandoning the partnership puts a limit on the extent to which one of the agents can dominate the decision

process. We believe that incorporating these considerations is an interesting avenue for future research.
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4 APPENDIX: The Dictatorship Result

We first prove that the function V (.) is strictly concave. This will allow us to make use of Lagrangian

methods. In order to do so, we start by pointing out that, since the players’ preferences satisfy a single

crossing condition, Incentive Compatibility can be replaced by a first order condition for truthtelling and a

monotonicity condition.
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Lemma 1 A contract (a (.) , w1 (.) , ...wn−1 (.))θ is Incentive Compatible if, and only if, it satisfies

Eθ−i

µ∙
du (a (θ) , θi)

da

da (θ)

dθi

¸
+ δ

d

dθi
wi (θ)

¶
= 0, i 6= n (IC Local i)

Eθ−n

µ
du (a (θ) , θn)

da

da (θ)

dθn
+ δ

d

dθn
V (w1 (θ) , ..., wn−1 (θ))

¶
= 0, i = n. (IC Local n)

Eθ−i

∙
∂u (a (τ , θ−i) , θi)

∂θi

¸
is non− decreasing in τ for all i. (Expected Monotonicity)

Proof. Standard given that the players’ instantaneous utility satisfies a single crossing condition.
As a first step toward showing that V (.) is strictly concave, we have

Lemma 2 For any (wi)
n−1
i=1 ∈ [v, v]

n−1, define, for a given V0 (.) strictly concave, the sequence {Vk (.)}k≥1w∈[v,v]n−1
recursively as follows

Vk (w) = max
{a(θ),w(θ)}θ

Eθ [(1− δ)u (a (θ) , θn) + δVk−1 (w (θ))]

subject to

Eθ [(1− δ)u (a (θ) , θ1) + δw1 (θ)] = w1
...

Eθ [(1− δ)u (a (θ) , θn−1) + δwn−1 (θ)] = wn−1

Eθ−i [(1− δ)u (a (θ) , θi) + δwi (θ)] ≥ Eθ−i

h
(1− δ)u

³
a
³bθi, θ−i´ , θi´+ δwi

³
θ−i,bθi´i for all θi, θ̂i, i 6= n

Eθ−n [(1− δ)u (a (θ) , θn) + δVk−1 (w (θn))] ≥ Eθ−n

h
(1− δ)u

³
a
³bθn, θ−n´ , θn´+ δVk−1

³
w
³bθn, θ−n´´i for all θn, θ̂n

w (θ) ∈ [v, v]n−1 for all θ.

Then, there exists a δ < 1 such that, if δ ≥ δ, Vk (.) is strictly concave for all k

Proof. We make an induction argument. By hypothesis, V0 (.) is strictly concave. Assume Vk−1(.) is strictly
concave.

Let (a1 (θ) , w1 (θ)) and (a2 (θ) , w2 (θ)) be, respectively, solutions of the problem in the statement of the

Lemma (the one that defines Vk (, )) when the promise keeping constraint is indexed by w1 = (w11, ..., w1n−1)

and w2 = (w21, ..., w2n−1) . Denote αw1j + (1− α)w2j by wα
j .

If it were feasible to implement aα (θ) = αa1 (θ) + (1− α) a2 (θ) , where α ∈ (0, 1) , with continuation
values wα (θ) = αw1 (θ) + (1− α)w2 (θ) , we would have, for any player j 6= n,

Eθ

£
(1− δ)u (aα (θ) , θj) + δwα

j (θ)
¤

(Ineq)

> αEθ [(1− δ)u (a1 (θ) , θj) + δw1j (θ)] + (1− α)Eθ [(1− δ)u (a2 (θ) , θj) + δw2j (θ)]

= αw1j + (1− α)w2j ≡ wα
j ,

where the first inequality follows from the strict concavity of u (., θ2) , and the equality follows from the

definition of (a1 (θ) , w1 (θ)) and (a2 (θ) , w2 (θ)) .

We consider two cases:
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Case 1: There exists � > 0 such that wα
j (θ)− � > v for all j and θ ∈ [0, 1]n and

Eθ−i

∙
du (aα (τ , θ−i) , θi)

dθi

¸
non-decreasing in τ for all i.

Since the inequality in 1 is strict, we can find, for all j = 1, ..., n−1 and for some wj ≥ wα
j , a non-negative

function gj (θj , θn; δ) ≡ hj (θj ; δ) + hnj (θn; δ) and a δ such that, if δ ≥ δ,

Eθ

£
(1− δ)u (aα (θ) , θj) + δ

£
wα
j (θ)− gj (θj , θn; δ)

¤¤
= wj ,

wα
j (θ)− gj (θj , θn; δ) > v

and, at the same time, fo j = 1, ..., n− 1,

− δ

(1− δ)

dhj (θj)

dθj
= Eθ−j

⎡⎣ α
du(a1(θ),θj)

da
da1(θ)
dθj

+ (1− α)
du(a2(θ),θj)

da

−du(aα(θ),θj)
da

h
αda1(θ)

dθj
+ (1− α) da2(θ)dθj

i ⎤⎦ (2)

and, for agent n,

Eθ−n

∙
du (aα (θ) , θn)

da

∙
α
da1 (θ)

dθn
+ (1− α)

da2 (θ)

dθn

¸¸
+

δ

1− δ
Eθ−n

∙
d

dθn
Vk−1 (w

α (θ)− g (θ; δ))

¸
= 0. (3)

Conditions 2 and 3 guarantee Incentive Compatibility. Indeed, with these continuation values, for all

players, the first order condition for truthtelling in the above lemma is satisfied. Moreover, by assumption,

aα (θ) satisfies expected monotonicity. Therefore, aα (θ), coupled with continuation values wα
i (θ) − gi (θ) ,

is feasible when the promised value for player i is wi ≥ wα
i .

We then have, for all δ ≥ δ,

Vk (w
α) = Vk (αw1 + (1− α)w2) ≥ Vk (w) (Concavity)

≥ Eθ [(1− δ)u (aα (θ) , θn) + δVk−1 (w
α (θ)− g (θ))]

> α [Eθ [(1− δ)u (a1 (θ) , θn)]] + (1− α) [Eθ [(1− δ)u (a2 (θ) , θn)]] + δEθ [Vk−1 (w
α (θ))]

≥
Ã

α [Eθ [(1− δ)u (a1 (θ) , θn)] + δVk−1 (w1 (θ))]

+ (1− α) [Eθ [(1− δ)u (a2 (θ) , θn)] + δVk−1 (w2 (θ))]

!
= αVk (w1) + (1− α)Vk (w2) ,

where the first inequality follow from the fact that Vk (.) is strictly decreasing, the second inequality follows

from the fact that aα (θ) along with wα (θ) − g (θ; δ) is feasible when the promised value for players j =

1, .., n − 1 are wj and δ ≥ δ, the third inequality follows from strict concavity of Player n’s instantaneous

payoff and from the fact that Vk−1 (.) is decreasing, and the fourth inequality follows from the Concavity of

Vk−1. It follows that Vk (.) is strictly concave.

Case 2: wα
j (θ) = v for some j and for all θ belonging to a (positive probability) set A ⊂ [0, 1]n and/or

aα (θ) does not satisfy expected monotonicity.

The same procedure (changing aα (θ)) applies to both cases, so we focus on the situation in which wα
j (θ) =

v for some j and for all θ in some A ⊂ [0, 1]n .
Denote by J the set of all players for which wα

j (θ) = v for some θ. Since the inequality in 1 is strict, we

can find, for some δ1 and wj > wα
j , j ∈ J, a function l (θ; δ) =

X
j∈J

lj (θj; δ) + ln (θn; δ) such that

Eθ

£
(1− δ)u (aα (θ) + l (θ) , θj) + δwα

j (θ)
¤
= wj ,
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Eθ−j

∙
du (aα (θ) + l (θ) , θj)

da

∙
d (aα (θ) + l (θ))

dθj

¸
−
∙
α
du (a1 (θ) , θj)

da

da1 (θ)

dθj
− (1− α)

du (a2 (θ) , θj)

da

da2 (θ)

dθj

¸¸
= 0,

and

Eθ−n

∙
du (aα (θ) + l (θ) , θj)

da

∙
α
da1 (θ)

dθj
+ (1− α)

da2 (θ)

dθj
+

dln (θn)

dθn

¸¸
+

δ

1− δ
Eθ−n

∙
d

dθn
Vk−1 (w

α (θ))

¸
= 0,

for all δ ≥ δ1.

For all players i /∈ J, as in Case 1, we can find a δ2 and non-negative function hi (θi; δ) such that, whenever

δ ≥ δ2,

Eθ [(1− δ)u (aα (θ) + l (θ; δ) , θi) + δ [wα
i (θ)− hi (θi; δ)]] = wi,

and

Eθ−j

∙
(1− δ)

du (aα (θ) + l (θ; δ) , θi)

da

∙
d [aα (θ) + l (θ; δ)]

dθi

¸
+ δ

d [wα
i (θ)− hi (θi; δ)]

dθi

¸
= 0,

for some wi > wα
i . Hence, a

α (θ) + l (θ; δ) coupled with continuation values ewj (θ) = wα
j (θ) for j ∈ J,

and ewi (θ) = wα
i (θ) − hi (θ; δ) for the other players, is feasible when promised values are w > wα and

δ ≥ max
©
δ1, δ2

ª
.

It then follows, that whenever δ ≥ δ (which is defined below and larger than max
©
δ1, δ2

ª
),

Vk (w
α) = Vk (αw1 + (1− α)w2) > Vk (w)

≥ Eθ [(1− δ)u (aα (θ) + l (θ)) + δVk−1 ( ew (θ))]
≥ Eθ [(1− δ)u (aα (θ)) + δ [αVk−1 (w1 (θ)) + (1− α)Vk−1 (w2 (θ))]]

≥
Ã

α [Eθ [(1− δ)u (a1 (θ) , θn)] + δVk−1 (w1 (θ))]

+ (1− α) [Eθ [(1− δ)u (a2 (θ) , θn)] + δVk−1 (w2 (θ))]

!
= αVk (w1) + (1− α)Vk (w2) ,

where the first inequality follows from Vk (.) being strictly decreasing, the second follows because aα (.) +

l (.) and ew (.) are feasible when promised values are w. The third inequality, which is the key one, holds
because, since Vk−1 is strictly concave,

Vk−1 ( ew (θ)) > αVk−1 (w1 (θ)) + (1− α)Vk−1 (w2 (θ)) ,

so that there exists a δ3 such that, if δ ≥ δ3, the inequality holds.

Letting δ = max
©
δ1, δ2, δ3

ª
, the result follows.

Proposition 2 There exists a δ < 1 such that, if δ ≥ δ, V (.) is strictly concave.

Proof. We prove the result in five steps.
Define

T (V ) (w) = max
{a(θ),w(θ)}θ

Eθ [(1− δ)u (a (θ) , θn) + δV (w (θ))]

subject to

Eθ [(1− δ)u (a (θ) , θ1) + δw1 (θ)] = w1
...

Eθ [(1− δ)u (a (θ) , θn−1) + δwn−1 (θ)] = wn−1
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Eθ−n [(1− δ)u (a (θ) , θn) + δVk−1 (w (θn))] ≥ Eθ−n

h
(1− δ)u

³
a
³bθn, θ−n´ , θn´+ δVk−1

³
w
³bθn, θ−n´´i for all θn, θ̂n

Eθ−i [(1− δ)u (a (θ) , θi) + δwi (θ)] ≥ Eθ−i

h
(1− δ)u

³
a
³
θ−i,bθi´ , θi´+ δwi

³
θ−i,bθi´i for all θi, θ̂i, i = 1, ..., n−1.

w (θ) ∈ [v, v]n−1 for all θ.

STEP 1: For any δ, the set of {a (θ) , w (θ)}θ that satisfies the constraints of the above problem is

compact and upper hemi-continuous.

We prove compactness. The proof of upper hemi-continuity of the constraint set follows similar steps.

Note that {a (θ) , w (θ)}θ satisfies the Incentive Compatibility constraints if, and only if:

(1− δ)Eθ−i [u (a (θ) , θi)] + δEθ−i [wi (θ)] (Envelope)

= (1− δ)Eθ−i [u (a (0, θ−i) , 0)] + δEθ−i [wi (0, θ−i)]

+ (1− δ)

θiZ
0

Eθ−i [uθi (a (τ , θ−i) , τ)] dτ , i = 1, ..., n− 1

and

(1− δ)Eθ−n [u (a (θ) , θn)] + δEθ−n [V (w (θ))] (Envelope 1)

= (1− δ)Eθ−n [u (a (0, θ−n) , 0)] + δEθ−n [V (w (0, θ−n))]

+ (1− δ)

θnZ
0

Eθ−n [uθn (a (τ , θ−n) , τ)] dτ.

and Eθ−i [uθi (a (τ , θ−i) , θi)] being non-decreasing in τ . (The envelope conditions follow from Milgrom

and Segal (2002)). Using 1, after some integration by parts, the Promise Keeping constraints can be written

as

(1− δ)Eθ−i [u (a (0, θ−i) , 0)] + δEθ−i [wi (0, θ−i)] + (1− δ)Eθ

∙
uθi (a (θi, θ−i) , θi)

(1− F (θi))

f (θi)

¸
= wi.

Feasibility, in turn, calls for

wi (θ) ∈ [v, v] for all i, and θ

Now, take a sequence {ak (.) , wk (.)}k satisfying all those constraints of the problem. We show that there
exists a convergent subsequence.

Since Eθ−j

£
uθj (ak (τ , θ−j) , τ)

¤
is a sequence of non-decreasing and uniformly bounded functions, by

Helly’s Selection Theorem (Kolmogorov and Fomin, 1970, p. 373), there exists a subsequenceEθ−j

£
uθj (aks (τ , θ−j) , τ)

¤
that converges to a non-decreasing Eθ−j

£
uθj (a (τ , θ−j) , τ)

¤
, j = 1, ..., n. Moreover, for i = 1, ..., n− 1,"

(1− δ)Eθ−i [u (ak (θ) , θi)]

+δEθ−i [wki (θ)]

#
=

⎡⎢⎢⎣
(1− δ)Eθ−i [u (ak (0, θ−i) , 0)] + δEθ−i [wki (0, θ−i)]

+ (1− δ)

θiZ
0

Eθ−i [uθi (ak (τ , θ−i) , τ)] dτ

⎤⎥⎥⎦
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and for n "
(1− δ)Eθ−n [u (ak (θ) , θn)]

+δEθ−n [V (wk (θ))]

#
=

⎡⎢⎢⎣
(1− δ)Eθ−n [u (ak (0, θ−n) , 0)] + δEθ−n [V (wk (0, θ−n))]

+ (1− δ)

θnZ
0

Eθ−n [uθn (ak (τ , θ−n) , τ)] dτ

⎤⎥⎥⎦
We now argue that, for both expressions, the right hand side converges (possibly along subsequences).

We show this for an arbitrary agent i (the analysis for player n is analogous).

Note that

(1− δ)Eθ−i [u (ak (0, θ−i) , 0)] + δEθ−i [wki (0, θ−i)]

is a sequence of real numbers that lies in a compact set. Therefore, there exists a subsequence that

converges. Let the convergent subsequence be

(1− δ)Eθ−i [u (aks (0, θ−i) , 0)] + δEθ−i [wksi (0, θ−i)]

and denote its limit by

(1− δ)Eθ−i [u (a (0, θ−i) , 0)] + δEθ−i [w (0, θ−i)] .

Also, since there exists a subsequence of Eθ−i [uθi (aks (τ , θ−n) , τ)] that converges to a non-decreasing

Eθ−i [uθi (a (τ , θ−n) , τ)] , one has, by the Dominated Convergence Theorem, that

(1− δ)

θnZ
0

Eθ−i [uθi (aks (τ , θ−i) , τ)] dτ → (1− δ)

θnZ
0

Eθ−i [uθi (a (τ , θ−i) , τ)] dτ .

Therefore, letting a (.) and w (.) be the functions for which

lim
s→∞

⎡⎢⎢⎣
(1− δ)Eθ−i [u (aks (0, θ−i) , 0)] + δEθ−i [wksi (0, θ−i)]

+ (1− δ)

θnZ
0

Eθ−n [uθi (aks (τ , θ−n) , τ)] dτ

⎤⎥⎥⎦

=

⎡⎢⎢⎣
(1− δ)Eθ−i [u (a (0, θ−i) , 0)] + δEθ−i [wi (0, θ−i)]

+ (1− δ)

θnZ
0

Eθ−i [uθi (a (τ , θ−i) , τ)] dτ.

⎤⎥⎥⎦ ,
it follows that 1 holds at (a (.) , w (.)) .

As for the Promise Keeping constraints, since, for all k and i,

(1− δ)Eθ−i [u (ak (0, θ−i) , 0)] + δEθ−i [wki (0, θ−i)] + (1− δ)Eθ

∙
uθi (ak (θi, θ−i) , θi)

(1− F (θi))

f (θi)

¸
= wi,

and, along a subsequence, the left hand side converges, one has, invoking again the Dominated Convergence

Theorem, that

(1− δ)Eθ−i [u (a (0, θ−i) , 0)] + δEθ−i [wi (0, θ−i)] + (1− δ)Eθ

∙
uθi (a (θi, θ−i) , θi)

(1− F (θi))

f (θi)

¸
= wi.
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Finally, since, for all k,

wk (θ) ∈ [v, v]n−1

one must have

w (θ) ∈ [v, v]n−1 .

Therefore, the choice set is compact.

STEP 2: If V (.) is continuous, T (V ) is also continuous
Given STEP 1, this follows from Theorem 2 of Ausubel and Deneckere (1993).

STEP 3: T (.) is a contraction of modulus δ.
Denote by C (w) the set of feasible actions and continuation values, {a (.) , w (.)} , given current values w.

We have

T (V1) = max
{a(.),w(.)}∈C(w)

Eθ [(1− δ)u (a (θ) , θn) + δV1 (w (θ))]

= max
{a(.),w(.)}∈C(w)

Eθ [(1− δ)u (a (θ) , θn) + δV2 (w (θ)) + δ [V1 (w (θ))− V2 (w (θ))]]

≤ max
{a(.),w(.)}∈C(w)

Eθ [(1− δ)u (a (θ) , θn) + δV2 (w (θ))] + δ ||V1 − V2||

= T (V2) + δ ||V1 − V2|| ,

where ||.|| is the sup norm.
Therefore,

||T (V1)− T (V2)|| ≤ δ ||V1 − V2|| .

STEP 4: The sequence {Vk (.)}k≥1w∈[v,v]n−1 , with V0 (w) = 0 for all w, converges to V (.)

This follows from the fact that T is a contraction and the set, C [v, v] , of continuous functions over [v, v]

endowed with the sup norm is a complete metric space..

STEP 5: There exists a δ < 1 such that, for all δ ≥ δ, V (.) is strictly concave.

Pick the δ such that the sequence of {Vk (.)} is strictly concave for δ ≥ δ. As each element in the sequence

{Vk (.)} is strictly concave, the limit must be concave. Now, using the concavity of V (.) and proceeding
exactly as in the proof of the above Lemma, it is easy show that V (.) must be, in fact, strictly concave.

A property of V (.) that we will use to prove the dictatorship result is

Lemma 3 V (.) is continuously differentiable over (v, v)n−1

Proof. Since V (.) is concave, this follows from Corollary 2 in Milgrom and Segal (2002).

Now, ignoring Expected Monotonicity, we construct the Lagrangian by assigning multipliers to the local

IC (λi (θi))i=1,...,n,θi∈[0,1] , and PK (γi)
n−1
i=1 constraints:

V (v) = max
{a(.),wj(.)}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eθ [(1− δ)u (a (θ) , θn) + δV (w (θ))]
n−1X
i=1

[γi (Eθ [(1− δ)u (a (θ) , θi) + δwi (θ)]− vi)]

+
n−1X
i=1

1Z
0

"
λi (θi)

Ã
Eθ−i

Ã
(1− δ)

h
du(a(θ),θi)

da
da(θ)
dθi

i
+δ d

dθi
[wi (θ)]

!!#
dθi

+

1Z
0

"
λn (θn)

Ã
Eθ−n

Ã h
(1− δ) du(a(θ),θn)da

da(θ)
dθn

i
+δ d

dθn
V (w (θ))

!!#
dθn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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As is standard (see Theorems 1 and 2 in sections 8.3-8.4 of Luenberger (1969))14, {a∗ (θ) , w∗i (θ)}θ
— with a∗ (.) satisfying expected monotonicity strictly — is optimal if, and only if, there are multipliers

{λi (θi) , γi}i=1,..,n,θi for which {a
∗ (θ) , w∗i (θ)}θ maximizes the above Lagrangian.

4.1 The Lagrangian Representation and the Result

Some rounds of integration by parts allow us to write our program of interest as

V (v) = max
{a(.),w(.)}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eθ [(1− δ)u (a (θ) , θn) + δV (w (θ))]
n−1X
i=1

[γi (Eθ [(1− δ)u (a (θ) , θi) + δwi (θ)]− vi)]

+
n−1X
i=1

¡
λi (θi)

£
(1− δ)Eθ−i [u (a (θ) , θi)]

¤
+ δEθ−i [w (θ)] |

¢θi=1
θi=0

−
n−1X
i=1

⎛⎜⎜⎜⎜⎜⎜⎝

1Z
0

h
dλi(θi)
dθi

£
(1− δ)Eθ−i [u (a (θ) , θi)]

¤i
dθi

+

1Z
0

λi (θi)
h
(1− δ)Eθ−i

h
du(a(θ),θi)

dθi

ii
dθi

⎞⎟⎟⎟⎟⎟⎟⎠
−δ

n−1X
i=1

⎡⎣ 1Z
0

h
dλi(θi)
dθi

Eθ−i [wi (θ)]
i
dθi

⎤⎦
+
¡
λn (θn)

£
(1− δ)Eθ−n [u (a (θ) , θn)]

¤
+ δEθ−n [V (w (θ))] |

¢θn=1
θn=0

−
1Z
0

h
dλn(θn)
dθn

£
(1− δ)Eθ−n [u (a (θ) , θn)]

¤i
dθn

−
1Z
0

λn (θn)
h
(1− δ)Eθ−n

h
du(a(θ),θn)

dθn

ii
dθn

−δ
1Z
0

h
dλn(θn)
dθn

Eθ−n [V (w (θ))]
i
dθn.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As suggested by Myerson (1984), it is convenient to think about the Lagrangian as representing the

weighted sum of the agents’ virtual utilities.15

Indeed, if, for agents i = 1, ..., n− 1, one defines new multipliers

eλi (θi) = λi (θi)

γi
,

14The concavity of V (.) in our setting plays the role Proposition 1 in section 8.3 plays in Theorems 1 and 2 of Luenberger

(1969).
15 See also Myerson’s notes on virtual utility at http://home.uchicago.edu/~rmyerson/research/virtual.pdf
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the FOC wrt a (.), and wj (.) are, for θ ∈ (0, 1)n , respectively,⎛⎜⎜⎜⎜⎝
h
∂u(a(θ),θn)

∂a f (θn)− dλn(θn)
dθn

∂u(a(θ),θn)
∂a − λn (θn)

∂2u(a(θ),θn)
∂θn∂a

iY
i6=n

f (θi)

+
n−1X
i=1

⎡⎣hγi ∂u(a(θ),θi)∂a f (θi)− dλi(θi)
γidθi

∂u(a(θ),θi)
∂a − λi(θi)

γi

∂2u(a(θ),θi)
∂θi∂a

iY
j 6=i

f (θj)

⎤⎦
⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
h
∂u(a(θ),θn)

∂a f (θn)− dλn(θn)
dθn

∂u(a(θ),θn)
∂a − λn (θn)

∂2u(a(θ),θn)
∂θn∂a

iY
i6=n

f (θi)

+
n−1X
i=1

γi

⎡⎣h∂u(a(θ),θi)
∂a f (θi)− dλi(θi)

dθi

∂u(a(θ),θi)
∂a − eλi (θi) ∂2u(a(θ),θi)∂θi∂a

iY
j 6=i

f (θj)

⎤⎦
⎞⎟⎟⎟⎟⎠

= 0,

and ⎛⎜⎜⎝
dV (w(θ))

dwj

Y
i

f (θi) + γi
Y
i

f (θi)− dλi(θi)
dθi

Y
i6=j

f (θi)

−dλn(θn)
dθn

dV (w(θ))
dwj

Y
i6=n

f (θi)

⎞⎟⎟⎠ = 0.

Defining agent i’s (i 6= n) virtual instantaneous utility as being

u (a (θ) , θi)−
deλi (θi)
f (θi) dθi

u (a (θ) , θi)−
eλi (θi)
f (θi)

∂u (a (θ) , θi)

∂θi

and agent n’s virtual instantaneous utility as being

u (a (θ) , θn)−
dλn (θn)

f (θn) dθn
u (a (θ) , θn)−

λn (θn)

f (θn)

∂u (a (θ) , θn)

∂θn
,

it can be readily seen from the FOC for a (.) , the optimal mechanism maximizes the weighetd sum of the

agents’ virtual instantaneous utilities, with the weight to agent n being one, and the weight to agent i 6= 1
being equal to γi.

The first order conditions for continuation values lead to the following result:

Lemma 4 (Martingale Lemma) There exists a measure Qi such that Player 1´s marginal value (with

respect to player i0s continuation value) follows a martingale, i.e.

EQ
i

∙
dV (w (θ))

dwi

¸
=

dV (w)

dwi

Proof. The FOC wrt wi (.) is⎛⎜⎜⎝
dV (w(θ))

dwi

Y
j

f (θj)− dλn(θn)
dθn

dV (w(θ))
dwi

Y
j 6=n

f (θj)

+γi
Y
j

f (θj)− dλi(θi)
dθi

Y
j 6=i

f (θi)

⎞⎟⎟⎠ = 0.

This can be re-written as

dV (w (θ))

dwi

⎛⎝Y
j

f (θj)−
dλn (θn)

dθn

Y
j 6=n

f (θj)

⎞⎠ = −γi

⎛⎝Y
j

f (θj)−
deλi (θi)
dθi

Y
j 6=i

f (θj)

⎞⎠ ,
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or

dV (w (θ))

dwi

⎛⎝Y
j

f (θj)− dλn(θn)
dθn

Y
j 6=n

f (θj)

⎞⎠
⎛⎝Y

j

f (θj)− dλi(θi)
dθi

Y
j 6=i

f (θj)

⎞⎠ = −γi.

Hence,

Eθ

⎡⎢⎢⎢⎢⎢⎢⎣
dV (w (θ))

dwi

⎛⎝Y
j

f (θj)− dλn(θn)
dθn

Y
j 6=n

f (θj)

⎞⎠
⎛⎝Y

j

f (θj)− dλi(θi)
dθi

Y
j 6=i

f (θj)

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ = −γi,
or

EQ
i

∙
dV (w (θ))

dwi

¸
= −γi,

where, as suggested by the notation, Qi is distribution associated with the density⎛⎝Y
j

f (θj)− dλn(θn)
dθn

Y
j 6=n

f (θj)

⎞⎠
⎛⎝Y

j

f (θj)− dλi(θi)
dθi

Y
j 6=i

f (θj)

⎞⎠
Y
j

f (θj)
16 .

By the Envelope Theorem,
dV (v)

dvi
= −γi.

Hence,
dV (v)

dvi
= EQ

i

∙
dV (w (θ))

dwi

¸

as claimed.

Lemma 5 (Spreading of Values) Assume that vi ∈ (v, v) for all i. Then, for each i, there is positive

probability of both dV (w(θ))
dwi

> dV (v)
dvi

and dV (w(θ))
dwi

< dV (v)
dvi

.

Proof. Assume toward a contradiction that, for some i,

dV (w (θ))

dwi
≥ dV (v)

dvi

for almost all θ (the other case is analogous).

Since
dV (v)

dvi
= EQ

i

∙
dV (w (θ))

dwi

¸
,

16A proper normalization of λi (θi) can be made so to guarantee that this integrates to 1.
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it must be the case that
dV (v)

dvi
=

dV (w (θ))

dwi
for almost all θ.

Plugging this in the first order conditions for wi (.) , we get

dV (w)

dwi

Y
j

f (θj)−
dV (w)

dwi

Y
j

f (θj)−
dλi (θi)

dθi

Y
j 6=i

f (θj)−
dλn (θn)

dθn

dV (w)

dwi

Y
j 6=n

f (θj) = 0,

(where we have used dV (v)
dvi

= −γi) or

−dλi (θi)
dθi

Y
j 6=i

f (θj) =
dλn (θn)

dθn

dV (w)

dwi

Y
j 6=n

f (θj) .

Dividing both sides by
Y
j

f (θj) , we have

−dλi (θi)
dθi

∙
1

f (θi)

¸
=

dλn (θn)

dθn

∙
1

f (θn)

¸
dV (w)

dwi
.

Since the left hand side just depends on θi and the right hand side on θn, the above can hold for almost

all (θi, θn) only if
dλi (θi)

dθi
=

dλn (θn)

dθn
= 0 for almost all (θi, θn) .

Moreover, since for all s ∈
£
1
2 , 1
¤
and j, λj

¡
1
2 − s

¢
= −λj

¡
1
2 + s

¢
— this follows because the problem is

symmetric around 1
2 — , one must have λi (θi) = 0, and λn (θn) = 0 for all θi, θn.

Plugging λn (θn) = 0 =
dλn(θn)
dθn

for all θn in the FOC for wk (θ) for k 6= i, we get⎛⎝dV (w (θ))

dwk

Y
j

f (θj) + γk
Y
j

f (θj)−
dλk (θk)

dθk

Y
j 6=k

f (θj)

⎞⎠ = 0.

Dividing through by
Y
j

f (θj) , one gets

dV (w (θ))

dwk
+ γk =

dλk (θk)

dθk

∙
1

f (θk)

¸
for almost all θ.

Since, by the Envelope Theorem, γk = −
dV (w)
dwk

, one must have

dV (w (θ))

dwk
− dV (w)

dwk
=

dλk (θk)

dθk

∙
1

f (θk)

¸
for almost all θ.

Now taking expectations over both sides of the above equality, we have

EQ
k

∙
dV (w (θ))

dwk
− dV (w)

dwk

¸
= EQ

k

∙
dλk (θk)

dθk

∙
1

f (θk)

¸¸
Using the martingale property, it must be the case that

EQ
k

∙
dλk (θk)

dθk

∙
1

f (θk)

¸¸
= 0.
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Since dλk(θk)
dθk

does not change sign, it must be the case that dλk(θk)
dθk

= 0 for almost all θk, which implies

— as λk
¡
1
2 − s

¢
= −λk

¡
1
2 + s

¢
for all s, since the problem is symmetric around 1

2 — that λk (θk) = 0 for all

k, and for all θk.

Plugging this in the FOC for wk (θ) ,

dV (w (θ))

dwk
− dV (w)

dwk
= 0 for almost all θ and for all k,

which implies, given the strict concavity of V (.) , that, for all k, wk (θ) = wk for almost all θ

Using the fact that, for all i and for all θi,
dλi(θi)
dθi

= λi (θi) = 0, the FOC for a reads

∂u (a (θ) , θn)

∂a
+

n−1X
i=1

γi
∂u (a (θ) , θi)

∂a
= 0.

It is easy to see that the a (.) implicitly defined by the above equation is not IC when continuation values

are constant, unless γi = 0 for all i, or γi =∞ for some i; that is, unless the dictatorship holds. Dictatorship,

however, contradicts wj ∈ (v, v) for all j
We are now able to show:

Theorem 1 The provision of intertemporal incentives necessarily leads to a dictatorial mechanism: In
the limit as t → ∞, either vj converges to v almost surely, j = 1, ..., n − 1, or V (v) converge to v almost

surely .

Proof. Since dV (v)
dvi

is a non-positive martingale, by Dobb’s convergence Theorem (see Dobb (1953)), it

converges almost surely to some random variable, Ri. Next we show by contradiction that Ri cannot have

any positive likelihood for values in (0,∞) . Hence, all the probability is concentrated where Ri = 0 or

Ri = −∞. Since this must be true for all i, that implies that either V (v) goes to v, or vj converges to v for

some i, i.e., one of the players becomes a dictator in the limit.

In search of a contradiction, suppose there existed, for some i, a positive probability of finding a path
dV (v)
dvi

with the property that limt→∞
dV (v)
dvi

= C, where 0 < C < ∞. Since dV (v)
dvi

is continuous for any v

∈ (v, v) , the sequence vt converges. Denote its limit by limt→∞ vt = v0 ∈ (v, v). Let W (w, θ) denote the

next period’s continuation value given the current promised value w and reported state θ. For wt to converge

it must be that W (w0, θ) = w0 for all θ. This however contradicts Lemma (5) .

4.2 The Approximate Efficiency Result

Proof of Approximate Efficiency. We define the ex-ante efficient allocation as

a∗ (θ) = argmax
a

Eθ

"
nX
i=1

u (a, θi)

#
.

We prove that, for any � > 0, there exists δ ∈ (0, 1) such that for δ > δ, the sum of the players’ equilibrium

payoffs is within � of the payoff associated with

vFB = Eθ

"
nX
i=1

u (a∗ (θ) , θi)

#
.

We do so by constructing continuation values that replicate as closely as possible the expected payments of

the expected externality mechanism proposed by Arrow (1979), and d’Aspremont and Gerard-Varet (1979),

that guarantee efficiency in a standard (static) Mechanism Design problem.
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Define

ξi (θi) = Eθ−i

⎡⎣X
j 6=i

u (a∗ (θ) , θj)

⎤⎦ ,
and consider, for i = 1, ..., n, the following candidates for continuation values

vi(θ) =

⎛⎜⎜⎝
¡
1−δ
δ

¢⎡⎣⎛⎝X
j 6=i

Eθ−i [u (a
∗ (θ) , θj)]

⎞⎠−Eθ−i

⎡⎣ 1
n−1

⎛⎝X
j 6=i

ξj (θj)

⎞⎠⎤⎦⎤⎦
+Eθ [u (a

∗ (θ) , θi)]− κ(δ)
δ

⎞⎟⎟⎠ ,

where κ (δ) is given by

κ (δ) = (1− δ)

⎡⎣X
j 6=i

max
θ

Eθ−i [u (a
∗ (θ) , θj)]−

1

n− 1

⎡⎣X
j 6=i

X
k 6=j

min
θ

Eθi [u (a
∗ (θ) , θj)]

⎤⎦⎤⎦ ≡ (1− δ) d,

and d is a finite number.

Note that κ (δ) is strictly positive and just depends on δ. It is chosen so to guarantee that, for all θ,

{vi(θ)}i are feasible values. Note, moreover, that

− 1

n− 1Eθ−i

nX
i=1

X
j 6=i

ξj (θj)

= − 1

n− 1

nX
i=1

(n− 1) ξi (θi)

= −
nX
i=1

ξi (θi) = −
nX
i=1

X
j 6=i

Eθ−i [u (a
∗ (θ) , θj)] .

Hence, upon inducing truthfulness from the players — so that a∗ (θ) can be implemented in the first period

in an Incentive Compatible way —,

nX
i=1

vi(θ) =

ÃX
i

Eθ [u (a
∗ (θ) , θi)]

!
− nκ (δ)

δ

so that the sum of the players’ expected payoffs when these continuation values are used is vFB − nκ(δ)
δ .

We now proceed by showing that, with these continuation values, one can implement a∗(θ) in an incentive

compatible way. We then show that we can make κ (δ) arbitrarily small as δ → 1.

Note that, if players other than i are being truthful, player i’s problem, if a∗ is implemented and he faces

vi(θ) as a continuation value, is

max
θi

(1− δ)Eθ−i

³
u
³
a∗
³bθi, θ−i´ , θi´´+ δEθ−i

h
vi(bθi, θ−i)i

which has the same solution as the one associated with the program17

max
θi

(1− δ)Eθ−i

³
u
³
a∗
³bθi, θ−i´ , θi´´+ (1− δ)

X
j 6=i

h
Eθ−i

h
u
³
a∗
³bθi, θ−i´ , θ−i´ii .

17All other terms do not not affect incentives.
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Since

a∗(θ) = argmax
a

nX
i=1

u (a, θi) ,

the announcement bθi = θi is optimal.

Now, pick � > 0. Consider the δ that solves

nκ
¡
δ
¢

δ
=

n
¡
1− δ

¢
d

δ
= �.

It is easy to see that

δ =
nd

nd+ �
< 1.

Moreover, for δ > δ, the sum of the players’ equilibrium payoff is within � of vFB , when one implements a∗ (θ)

with continuation values {vi (θ)}ni=1 . Since the optimal contract can not do worse than {a∗ (θ) , vi (θ)}i, the
result follows.
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