Machine Learning Advances for Time Series Forecasting

TD n. 679 2020

Ricardo Pereira Masini, Marcelo Medeiros, Eduardo F. Mendes.

In this paper we survey the most recent advances in supervised machine learning and highdimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The nonlinear methods considered in the paper include shallow and deep neural networks, in their feed-forward and recurrent versions, and tree-based  methods, such as random forests and boosted trees. We also consider ensemble and hybrid models by combining ingredients from different alternatives. Tests for superior predictive ability are briefly  reviewed. Finally, we discuss application of machine learning in economics and nance and provide an illustration with high-frequency nancial data

Login - Área do Aluno

Login ou senha invalido!

Search here