Package datazoom.amazonia
use
example
The idea of this guide is to show a way to use the package
datazoom.amazonia
. For example, we’ll use the PPM’s data
bases (obtained from IBGE) and from Mapbiomas (Observatório do Clima) in
order for us to analyze the amount of cattle heads per hectare of
pasture area. In order for us to be able to do this analysis, we can use
the functions load_ppm() e load_mapbiomas(), which are included in the
package, that import the data directly from the source to our
RStudio.
In order to start, it’ll be necessary to install the package
datazoom.amazonia
(through Github), in case it has not been
downloaded before, and upload it. Besides this, we’ll use the package
tidyverse
for data manipulation.
# install.packages("devtools")
# devtools::install_github("datazoompuc/datazoom.amazonia")
library(datazoom.amazonia)
#install.packages("tidyverse")
library(tidyverse)
The package’s functions are shown with the command
help(package = "datazoom.amazonia")
. Generally speaking,
they follow the pattern load_*
followed by the data base’s
name.
LOADING DATA
We’ll start loading the following data base from MAPBIOMAS, using the function
load_mapbiomas
.
data_frame_mapbiomas <- datazoom.amazonia::load_mapbiomas(dataset = "mapbiomas_cover",
cover_level = "4",
geo_level = "municipality",
raw_data = FALSE)
data_frame_mapbiomas <- data_frame_mapbiomas%>%
filter(year==2019)
Generally, every one of this package’s function follow this pattern.
Besides that, we can charge the dataset livestock_inventory from ppm.
data_frame_ppm <- load_ppm(dataset = "ppm_livestock_inventory",
time_period = 2019,
geo_level = "municipality",
language = "pt",
raw_data = FALSE)
## 1 in 27 states...
## 2 in 27 states...
## 3 in 27 states...
## 4 in 27 states...
## 5 in 27 states...
## 6 in 27 states...
## 7 in 27 states...
## 8 in 27 states...
## 9 in 27 states...
## 10 in 27 states...
## 11 in 27 states...
## 12 in 27 states...
## 13 in 27 states...
## 14 in 27 states...
## 15 in 27 states...
## 16 in 27 states...
## 17 in 27 states...
## 18 in 27 states...
## 19 in 27 states...
## 20 in 27 states...
## 21 in 27 states...
## 22 in 27 states...
## 23 in 27 states...
## 24 in 27 states...
## 25 in 27 states...
## 26 in 27 states...
## 27 in 27 states...
## Download Succesfully Completed!
Generally, every one of this package’s function follow this pattern.
Below, we can see the first 5 columns from the resulting table
mapbiomas
and, following this one, the table from
ppm
:
year | state | municipality | municipality_code | forest_formation |
---|---|---|---|---|
2019 | RO | Alta Floresta D’Oeste | 1100015 | 362622.39 |
2019 | RO | Ariquemes | 1100023 | 135556.17 |
2019 | RO | Cabixi | 1100031 | 35705.03 |
2019 | RO | Cacoal | 1100049 | 136779.98 |
2019 | RO | Cerejeiras | 1100056 | 76447.99 |
2019 | RO | Colorado do Oeste | 1100064 | 28187.34 |
geo_id | ano | num_v2670 | num_v2675 | num_v2672 |
---|---|---|---|---|
1100015 | 2019 | 428976 | 172 | 5456 |
1100023 | 2019 | 477665 | 539 | 7140 |
1100031 | 2019 | 121798 | 15 | 1690 |
1100049 | 2019 | 432640 | 111 | 5907 |
1100056 | 2019 | 89884 | 7 | 1009 |
1100064 | 2019 | 255696 | 123 | 4023 |
DATA WRANGLING
Next, we’ll do the merge of the data bases, and, afterwards, a simple data manipulation in order for us to generate the targeted variable: (cattle heads) / (pasture area hectares)
class(data_frame_mapbiomas$municipality_code ) <- 'numeric'
class(data_frame_mapbiomas$year) <- 'numeric'
class(data_frame_ppm$geo_id) <- 'numeric'
class(data_frame_ppm$ano) <- 'numeric'
merge <- data_frame_mapbiomas %>%
full_join(data_frame_ppm,
by = c('municipality_code' = 'geo_id', 'year' = 'ano'))
Afterwards, the comand that generates the variable of interest
data <- merge %>%
mutate(n_bovino_por_area_pastagem = num_v2670/pasture)
After that, we select the desired variables for the final data base.
data <- data %>%
select(municipality_code, municipality, state, year, n_bovino_por_area_pastagem) %>%
arrange(municipality_code, year) %>%
relocate(municipality_code, year)
APPLICATIONS
- We’ll now select the Midwest Region states (Centro-Oeste, in Portuguese) for 2019. Following, we aggregate the variables by State, in order for us to calculate the cattle heads by hectare average ration for each one of them.
data <- data%>%
filter(state %in%c( "GO" , "MT" , "MS" , "DF"))
data <- data%>%
group_by(state)%>%
summarise(average= mean(n_bovino_por_area_pastagem, na.rm= TRUE))
We can use the ggplot2
, contained in the
tidyverse
, to visualize the data in a bar plot.
ggplot(data, aes(x = state, y = average)) +
geom_col(fill = "#4fdf94", colour = "#00596d")+
xlab("Estado")+
ylab("Average cattle heads by hectare area")
At the Data Zoom Amazônia website, you can check other visualizations about other brazillians researche’s data, as well as the data bases covered by our package.
If you need any help or find any problems within the package, please contact us through Github.