Moment Based Estimation of Smooth Transition Regression Models with Endogenous Variables
Journal of Econometrics, TD n. 165, p. 100-111, 2011
Waldyr Areosa, Marcelo Medeiros.
Acesse o artigoNonlinear regressionmodels have been widely used in practice for a variety of time series and cross-section datasets. For purposes of analyzing univariate and multivariate time series data, in particular,smoothtransitionregression (STR) models have been shown to be very useful for representing and capturing asymmetric behavior. Most STR models have been applied to univariate processes, and have made a variety of assumptions, including stationary or cointegrated processes, uncorrelated, homoskedastic or conditionally heteroskedastic errors, and weakly exogenous regressors. Under the assumption of exogeneity, the standard method of estimation is nonlinear least squares. The primary purpose of this paper is to relax the assumption of weakly exogenous regressors and to discussmoment-based methods for estimating STR models. The paper analyzes the properties of the STR modelwith endogenousvariables by providing a diagnostic test of linearity of the underlying process under endogeneity, developing an estimation procedure and a misspecification test for the STR model, presenting the results of Monte Carlo simulations to show the usefulness of the model and estimation method, and providing an empirical application for inflation rate targeting in Brazil. We show that STR models withendogenousvariables can be specified and estimated by a straightforward application of existing results in the literature.
See also
The Value of Health Insurance: A Household Job Search Approach ( a sair)
Journal of Labor Economics, 2025
Gabriela Conti, Renata Narita, Rita Ginja.
Targeting in Adaptive Networks
Journal of Economic Theory, v. 228, 2025
Timo Hiller.
Tradeoffs and synergies for agriculture and environmental outcomes in the tropics (a sair)
Review of Environmental Economics and Policy, 2025
Fanny Moffette, Jennifer Alix-Garcia, Juliano Assunção, Prakash Mishra, Teevrat Garg.