Journal

Browse the categories to access the content of academic, scientific and opinion publications of the professors and students of the Department of Economics PUC-Rio.

The Dark Side of Transparency: Mission Variety and Industry Equilibrium in Decentralised Public Good Provision

The Economic Journal

V 133, P 2085-2109, 02/04/2023

We study the implications of transparency policies on decentralised public good provision by the non-profit sector. We present a model where imperfect monitoring of the use of funds interacts with the competitive structure of the non-profit sector under alternative informational regimes. Increasing transparency regarding the use of funds may have ambiguous effects on total public good provision and on donors’ welfare. On the one hand, transparency encourages all non-profit firms to engage more actively in curbing fund diversion. On the other hand, it tilts the playing field against non-profits facing higher monitoring costs, pressing them to give up on their missions. This effect on the extensive margin implies that transparency policies lead to a reduction in the diversity of social missions addressed by the non-profit sector. We show that the negative impact of transparency on social mission variety and on donors’ welfare is highest for intermediate levels of asymmetry in monitoring costs.

Gani Aldashev, Esteban Jaimovich, Thierry Verdier.


DETER-ing Deforestation in the Brazilian Amazon: Environmental Monitoring and Law Enforcement

American Economic Journal: Applied Economics

V 15, P 125-156, 29/03/2023

This paper proposes a novel instrumental variable to estimate the causal impact of law enforcement on deforestation. DETER, a satellite-based system for mapping land cover, is the key tool in Amazon monitoring. It determines the location of recent forest clearings and is used to target enforcement. Because DETER cannot detect land cover patterns beneath clouds, it detects no clearings in covered areas. Results conrm that DETER cloud coverage is systematically correlated with nes, a proxy for the presence of law enforcers. The study explores this exogenous source of variation in the allocation of law enforcers as an instrument for the intensity of enforcement. Stricter law enforcement eectively deterred Amazon deforestation, helping avoid over 22,000 km2 of cleared forest area per sample year. Leakage of criminal activity into neighboring areas does not appear to have occurred. Results are submitted to a series of robustness checks.

Juliano Assunção, Clarissa Costalonga e Gandour, Romero Cavalcanti Barreto da Rocha.


Education Transmission and Network Formation

Journal of Labor Economics

V 41, P 129 - 173, 12/03/2023

We propose a model of intergenerational transmission of education wherein children belong to either highly educated or low-educated families. Children choose the intensity of their social activities, while parents decide how much educational effort to exert. Using Add Health data, we find that, on average, children’s homophily acts as a complement to the educational effort of highly educated parents but as a substitute for the educational effort of low-educated parents. We also find that policies that subsidize kids’ socialization efforts can backfire for low-educated students because they tend to increase their interactions with other low-educated students.

Vincent Boucher, Carlo L del Bello, Fabrizio Panebianco, Yves Zenou, Thierry Verdier.


Affirmative Action and the Choice of Schools

Journal of Public Economics

V 219, 23/01/2023

Race-neutral affirmative action in higher education has gained importance following the controversies over their race-based alternatives. In many settings, these interventions use a school-based criterion that selects beneficiaries relative to their peers. Exploiting a nationwide quota policy in Brazil that reserved a large share of vacancies in higher education for publicschool students, I show that the reform increases the private-to-public school transitions, especially among students of low-performing private schools. In addition to a direct decrease in returns of the private-school investment, spillovers on indirectly exposed cohorts and general equilibrium effects in the school system might also explain the results

Ursula Mello.


Anchored Inflation Expectations

American Economic Journal: Macroeconomics

V 15, P 1-47, 02/01/2023

We develop a theory of low-frequency movements in inflation expectations, and use it to interpret joint dynamics of inflation and inflation expectations for the United States and other countries over the post-war period. In our theory long-run inflation expectations are endogenous. They are driven by short-run inflation surprises, in a way that depends on recent forecasting performance and monetary policy. This distinguishes our theory from common explanations of low-frequency properties of inflation. The model, estimated using only inflation and short-term forecasts from professional surveys, accurately predicts observed measures of long-term inflation expectations and identifies episodes of unanchored expectations.

Carlos Viana de Carvalho, Stefano Eusepi, Emanuel Moench, Bruce Preston.


From Zero to Hero: Realized Partial (Co)Variances

Journal of Econometrics

V 231, P 348-360, 01/12/2022

This paper proposes a generalization of the class of realized semivariance and semicovariance measures introduced by Barndorff-Nielsen et al. (2010) and Bollerslev et al. (2020a) to allow for a finer decomposition of realized (co)variances. The new “realized partial (co)variances” allow for multiple thresholds with various locations, rather than the single fixed threshold of zero used in semi (co)variances. We adopt methods from machine learning to choose the thresholds to maximize the out-of-sample forecast performance of time series models based on realized partial (co)variances. We find that in low dimensional settings it is hard, but not impossible, to improve upon the simple fixed threshold of zero. In large dimensions, however, the zero threshold embedded in realized semi covariances emerges as a robust choice.

Tim Bollerslev, Marcelo Medeiros, Andrew J. Patton, Rogier Quaedvlieg.


Money and Politics: The Effects of Campaign Spending Limits on Political Entry and Competition

American Economic Journal: Applied Economics

V 14, P 167-199, 28/09/2022

This paper studies the effects of campaign spending limits on the political entry, selection, and behavior of local politicians in Brazil. We analyze a reform that limits campaign spending for mayoral elections. The limits were implemented with a discontinuity that we exploit for causal identification. We find that stricter limits reduce reelection rates and increase political competition by attracting more candidates who are also less wealthy and rely less on self-financing. Despite their effects on electoral outcomes, stricter limits did not lead to significant short-run improvements in policy outcomes, such as in education and health.

Eric Avis, Claudio Ferraz, Frederico Finan, Carlos Eduardo Sant´Anna Varjão.


Selecting Top Bureaucrats: Admission Exams and Performance in Brazil

Review of Economics and Statistics

15/09/2022

In the absence of strong incentives, public service delivery crucially depends on bureaucrat selection. Despite wide adoption by governments, it is unclear whether civil service examinations reliably select for job performance. We investigate this question focusing on state judges in Brazil. Exploring monthly data on judicial output and cross-court movement, we estimate that judges account for at least 23% of the observed variation in number of cases disposed. With novel data on admission examinations, we show that judges with higher grades perform better than lower-ranked peers. Our results suggest competitive examinations can be an effective way to screen candidates.

Ricardo Dahis, Laura de Carvalho Schiavon, Thiago de Gouvêa Scot de Arruda.


Jumps in Stock Prices: New Insights from Old Data

Journal of Financial Markets

V 60, 19/08/2022

We characterize jump dynamics in stock market returns using a novel series of intraday prices covering over 80 years. Jump dynamics vary substantially over time. Trends in jump activity relate to secular shifts in the nature of news. Unscheduled news often involving major wars drives jump activity in early decades, whereas scheduled news and especially news pertaining to monetary policy drives jump activity in recent decades. Jump variation measures forecast excess stock market returns, consistent with theory. Results support models featuring a separate jump factor such that risk premium dynamics are not fully captured by volatility state variables

Bradley S. Paye, James A. Johnson, Marcelo Medeiros.


Centralized Admissions, Affirmative Action, and Access of Low-Income Students to Higher Education

American Economic Journal: Economic Policy

V 14, 01/08/2022

I analyze how two reforms, introduced to expand college access in Brazil, impacted enrollments of low-SES students. The first policy centralized applications in a nationwide platform (SISU), and the second expanded affirmative action quotas (AA) to a uniform share of 50 percent of vacancies offered by degree. Results show that SISU changes enrollment decisions of high-SES students, crowding out low-SES groups from the least competitive degrees disproportionately. In contrast, AA increases enrollments of low-SES individuals not only mechanically but also through behavioral responses. Finally, their interaction creates a complementary effect, protecting the low-SES groups from the crowding-out of centralization

Ursula Mello.


Short-Term Covid-19 Forecast for Latecomers

International Journal of Forecasting

V 38, P 467-488, 20/06/2022

The number of Covid-19 cases is increasing dramatically worldwide, with several countries experiencing a second and worse wave. Therefore, the availability of reliable forecasts for the number of cases and deaths in the coming days is of fundamental importance. We propose a simple statistical method for short-term real-time forecasting of the number of Covid-19 cases and fatalities in countries that are latecomers  i.e., countries where cases of the disease started to appear some time after others. In particular, we propose a penalized (LASSO) regression with an error correction mechanism to construct a model of a latecomer in terms of the other countries that were at a similar stage of the pandemic some days before. By tracking the number of cases in those countries, we forecast through an adaptive rolling-window scheme the number of cases and deaths in the latecomer. We apply this methodology to four dierent countries: Brazil, Chile, Mexico, and Portugal. We show that the methodology performs very well. These forecasts aim to foster a better short-run management of the health system capacity and can be applied not only to countries but to dierent regions within a country, as well.

Marcelo Medeiros, Alexandre Street, Davi Valladão, Gabriel F. R. Vasconcelos, Eduardo Zilberman.


Countercyclical Credit Policies and Banking Concentration: Evidence from Brazil

Journal of Banking and Finance

V 143, 20/06/2022

We study the asymmetric effects of procyclical and countercyclical expansions of public banks’ credit on economic growth. Using a panel of Brazilian municipalities (2009-2014) and the same identification strategy as Greenstone et al. (2020), we show that the effect of public credit on the economic performance of Brazilian municipalities was more substantial in 2009, the only year in our sample in which the public credit policy was countercyclical. Interestingly, our estimates also suggest that the effect of credit policies on growth is more salient when the banking market is more concentrated. Guided by the empirical results we built a theoretical model, which is calibrated with Brazilian data. Policy experiments based on the model demonstrate that countercyclical public credit policies are more effective than procyclical public credit policies. In line with the empirical results, the theoretical model also shows that public credit policies in general (either in booms or in recessions) are more efficient when credit markets are more concentrated. This result indicates that the structure of credit markets is crucial to explain the impact of public credit policies on growth.

Paulo Rodrigo Capeleti, Márcio Garcia, Fábio Miessi Sanches.


Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction

Journal of the American Statistical Association.

V 117, P 574-590 , 04/06/2022

In this paper we survey the most recent advances in supervised machine learning and highdimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The nonlinear methods considered in the paper include shallow and deep neural networks, in their feed-forward and recurrent versions, and tree-based  methods, such as random forests and boosted trees. We also consider ensemble and hybrid models by combining ingredients from different alternatives. Tests for superior predictive ability are briefly  reviewed. Finally, we discuss application of machine learning in economics and finance and provide an illustration with high-frequency financial data

Marcelo Medeiros, Ricardo Masini, Jianqing Fan.


Crime, Broken Families, and Punishment

American Economic Journal: Microeconomics

V 14, P 723-60, 10/05/2022

We develop a two-period overlapping generations model in which both the family structure and the decision to commit crime are endogenous and the dynamics of moral norms of good conduct is transmitted intergenerationally by families and peers. By "destroying" biparental families and putting fathers in prison, we show that more intense crime repression can backfire because it increases the possibility that criminals' sons become criminals themselves. Our model also explains the emergence and persistence of urban ghettos characterized by a large proportion of broken families, high crime rates, and high levels of peer socialization, which reinforce criminal activities

Emeline Bezin, Yves Zenou, Thierry Verdier.


Regularized estimation of high-dimensional vector autoregressions with weakly dependent innovations

Journal of Time Series Analysis

V 43, P 532-557, 01/04/2022

There has been considerable advance in understanding the properties of sparse regularization procedures in high-dimensional models. In time series context, it is mostly restricted to Gaussian autoregressions or mixing sequences. We study oracle properties of LASSO estimation of weakly sparse vector-autoregressive models with heavy tailed, weakly dependent innovations with virtually no assumption on the conditional heteroskedasticity. In contrast to current literature, our innovation process satisfy an L1 mixingale type condition on the centered conditional covariance matrices. This condition covers L1-NED sequences and strong mixing sequences as particular examples. From a modeling perspective, it covers several multivariate-GARCH specifications, such as the BEKK model, and other factor stochastic volatility specifications that were ruled out by assumption in previous studies.

Marcelo Medeiros, Eduardo F. Mendes, Ricardo Pereira Masini.


Counterfactual Analysis and Inference With Nonstationary Data

Journal of Business & Economic Statistics

V 40, N 1, P 227-239, 22/03/2022

Recently, there has been growing interest in developing econometric tools to conduct counterfactual analysis with aggregate data when a single “treated” unit suffers an intervention, such as a policy change, and there is no obvious control group. Usually, the proposed methods are based on the construction of an artificial/synthetic counterfactual from a pool of “untreated” peers, organized in a panel data structure. In this article, we investigate the consequences of applying such methodologies when the data comprise integrated processes of order 1, I(1), or are trend-stationary. We find that for I(1) processes without a cointegrating relationship (spurious case) the estimator of the effects of the intervention diverges, regardless of its existence. Although spurious regression is a well-known concept in time-series econometrics, they have been ignored in most of the literature on counterfactual estimation based on artificial/synthetic controls. For the case when at least one cointegration relationship exists, we have consistent estimators for the intervention effect albeit with a nonstandard distribution. Finally, we discuss a test based on resampling which can be applied when there is at least one cointegration relationship or when the data are trend-stationary.

Marcelo Medeiros, Ricardo Masini.


Collateral Shocks

American Economic Journal: Macroeconomics

V 14, P 83-103, 21/03/2022

We estimate a macroeconomic model on US data where banks lend to households and businesses and simultaneously adjust lending requirements on the two types of loans. We find that the collateral shock, a change in the ability of the financial sector to redeploy collateral, is the most important force driving the business cycle. Hit by this unique disturbance, our model quantitatively replicates the joint dynamics of output, consumption, investment, employment, and both household and business credit quantities and spreads. The estimated collateral shock generates accurate movements in lending standards and tracks measures of market sentiment.

Yvan Becard, David Gauthier.


Quantile regression methods for first-price auctions

Journal of Econometrics

V 226, P 224-247, 17/03/2022

The paper proposes a quantile-regression inference framework for first-price auctions with symmetric risk-neutral bidders under the independent private-value paradigm. It is first shown that a private-value quantile regression generates a quantile regression for the bids. The private-value quantile regression can be easily estimated from the bid quantile regression and its derivative with respect to the quantile level. This also allows to test for various specification or exogeneity null hypothesis using the observed bids in a simple way. A new local polynomial technique is proposed to estimate the latter over the whole quantile level interval. Plug-in estimation of functionals is also considered, as needed for the expected revenue or the case of CRRA risk-averse bidders, which is amenable to our framework. A quantile-regression analysis to USFS timber is found more appropriate than the homogenized-bid methodology and illustrates the contribution of each explanatory variables to the private-value distribution. Linear interactive sieve extensions are proposed and studied in the Appendices. 

Emmanuel Guerre, Nathalie Gimenes.


A Simple Model of Network Formation with Competition Effects

Journal of Mathematical Economics

V 99, 11/03/2022

This paper provides a game-theoretic model of network formation with a continuous effort choice. Efforts are strategic complements for direct neighbors in the network and display global substitution/competition effects. We show that if the parameter governing local strategic complements is larger than the one governing global strategic substitutes, then all pairwise Nash equilibrium networks are nested split graphs. We also consider the problem of a planner, who can choose effort levels and place links according to a network cost function. Again all socially optimal configurations are such that the network is a nested split graph. However, the socially optimal network may be different from equilibrium networks and efficient effort levels do not coincide with Nash equilibrium effort levels. In the presence of strategic substitutes, Nash equilibrium effort levels may be too high or too low relative to efficient effort levels. The relevant applications are crime networks and R&D collaborations among firms, but also interbank lending and trade.

Timo Hiller.


Search here